CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
基本信息
- 批准号:1544814
- 负责人:
- 金额:$ 56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The automotive industry finds itself at a cross-roads. Current advances in MEMS sensor technology, the emergence of embedded control software, the rapid progress in computer technology, digital image processing, machine learning and control algorithms, along with an ever increasing investment in vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) technologies, are about to revolutionize the way we use vehicles and commute in everyday life. Automotive active safety systems, in particular, have been used with enormous success in the past 50 years and have helped keep traffic accidents in check. Still, more than 30,000 deaths and 2,000,000 injuries occur each year in the US alone, and many more worldwide. The impact of traffic accidents on the economy is estimated to be as high as $300B/yr in the US alone. Further improvement in terms of driving safety (and comfort) necessitates that the next generation of active safety systems are more proactive (as opposed to reactive) and can comprehend and interpret driver intent. Future active safety systems will have to account for the diversity of drivers' skills, the behavior of drivers in traffic, and the overall traffic conditions.This research aims at improving the current capabilities of automotive active safety control systems (ASCS) by taking into account the interactions between the driver, the vehicle, the ASCS and the environment. Beyond solving a fundamental problem in automotive industry, this research will have ramifications in other cyber-physical domains, where humans manually control vehicles or equipment including: flying, operation of heavy machinery, mining, tele-robotics, and robotic medicine. Making autonomous/automated systems that feel and behave "naturally" to human operators is not always easy. As these systems and machines participate more in everyday interactions with humans, the need to make them operate in a predictable manner is more urgent than ever.To achieve the goals of the proposed research, this project will use the estimation of the driver's cognitive state to adapt the ASCS accordingly, in order to achieve a seamless operation with the driver. Specifically, new methodologies will be developed to infer long-term and short-term behavior of drivers via the use of Bayesian networks and neuromorphic algorithms to estimate the driver's skills and current state of attention from eye movement data, together with dynamic motion cues obtained from steering and pedal inputs. This information will be injected into the ASCS operation in order to enhance its performance by taking advantage of recent results from the theory of adaptive and real-time, model-predictive optimal control. The correct level of autonomy and workload distribution between the driver and ASCS will ensure that no conflicts arise between the driver and the control system, and the safety and passenger comfort are not compromised. A comprehensive plan will be used to test and validate the developed theory by collecting measurements from several human subjects while operating a virtual reality-driving simulator.
汽车行业发现自己正处在一个十字路口。当前MEMS传感器技术的进步、嵌入式控制软件的出现、计算机技术、数字图像处理、机器学习和控制算法的快速发展,以及对车对车(V2V)和车对基础设施(V2I)技术的不断增加的投资,将彻底改变我们在日常生活中使用车辆和通勤的方式。特别是汽车主动安全系统,在过去50年里取得了巨大的成功,并有助于控制交通事故。尽管如此,仅在美国,每年就有3万多人死亡,200万人受伤,而在世界范围内,这一数字要多得多。据估计,仅在美国,交通事故对经济的影响就高达每年3000亿美元。在驾驶安全性(和舒适性)方面的进一步改进需要下一代主动安全系统更加主动(而不是被动),并且能够理解和解释驾驶员的意图。未来的主动安全系统必须考虑到驾驶员技能的多样性、驾驶员在交通中的行为以及整体交通状况。本研究旨在通过考虑驾驶员、车辆、主动安全控制系统和环境之间的相互作用,提高当前汽车主动安全控制系统(ASCS)的能力。除了解决汽车工业的基本问题外,这项研究还将在其他网络物理领域产生影响,在这些领域中,人类手动控制车辆或设备,包括:飞行、重型机械操作、采矿、远程机器人和机器人医疗。制造对人类操作员来说感觉和行为“自然”的自主/自动化系统并不总是那么容易。随着这些系统和机器更多地参与与人类的日常互动,使它们以可预测的方式运行的需求比以往任何时候都更加迫切。为了实现本项目拟研究的目标,本项目将利用对驾驶员认知状态的估计,对ASCS进行相应的调整,以实现与驾驶员的无缝操作。具体来说,将开发新的方法来推断驾驶员的长期和短期行为,通过使用贝叶斯网络和神经形态算法来估计驾驶员的技能和当前的注意力状态,以及从转向和踏板输入中获得的动态运动线索。这些信息将被注入到ASCS操作中,以便通过利用自适应、实时、模型预测最优控制理论的最新成果来提高其性能。驾驶员和ASCS之间正确的自主水平和工作量分配将确保驾驶员和控制系统之间不会发生冲突,并且不会损害安全性和乘客舒适度。一项全面的计划将用于测试和验证开发的理论,通过收集几个人类受试者的测量数据,同时操作虚拟现实驾驶模拟器。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Panagiotis Tsiotras其他文献
Communication-Aware Map Compression for Online Path-Planning
用于在线路径规划的通信感知地图压缩
- DOI:
10.48550/arxiv.2309.13451 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Evangelos Psomiadis;Dipankar Maity;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems
用于参数相关 LTI 系统稳定性分析的多参数相关 Lyapunov 函数
- DOI:
10.1109/.2005.1467197 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
X. Zhang;Panagiotis Tsiotras;P. Bliman - 通讯作者:
P. Bliman
Time-Optimal Control of Axisymmetric Rigid Spacecraft Using Two Controls
轴对称刚性航天器的两种控制的时间最优控制
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
Haijun Shen;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Zero-Sum Games Between Large-Population Heterogeneous Teams: A Reachability-based Analysis under Mean-Field Sharing
大规模异构团队之间的零和博弈:平均场共享下基于可达性的分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Yue Guan;Mohammad Afshari;Panagiotis Tsiotras - 通讯作者:
Panagiotis Tsiotras
Stabilization and Tracking of Underactuated Axisymmetric Spacecraft with Bounded Control
- DOI:
10.1016/s1474-6670(17)40326-0 - 发表时间:
1998-07-01 - 期刊:
- 影响因子:
- 作者:
Panagiotis Tsiotras;Jihao Luo - 通讯作者:
Jihao Luo
Panagiotis Tsiotras的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Panagiotis Tsiotras', 18)}}的其他基金
CPS: Medium: Learning-Enabled Assistive Driving: Formal Assurances during Operation and Training
CPS:中:支持学习的辅助驾驶:操作和培训期间的正式保证
- 批准号:
2219755 - 财政年份:2022
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit
AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构
- 批准号:
2101250 - 财政年份:2021
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees
RI:小型:使用随机树实现不确定系统的鲁棒自治
- 批准号:
2008686 - 财政年份:2020
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
S&AS: FND: Decision-Making for Autonomous Systems with Limited Resources
S
- 批准号:
1849130 - 财政年份:2019
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Safe, Resilient and Efficient Operation of Autonomous Aerial and Ground Vehicles
自主空中和地面车辆的安全、弹性和高效运行
- 批准号:
1662542 - 财政年份:2017
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
RI: Small: Incremental Sampling-Based Algorithms and Stochastic Optimal Control on Random Graphs
RI:小:基于增量采样的算法和随机图上的随机最优控制
- 批准号:
1617630 - 财政年份:2016
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
- 批准号:
1426945 - 财政年份:2014
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Environment-Agent Interaction in Autonomous Networked Teams with Applications to Minimum-Time Coordinated Control of Multi-Agent Systems
自治网络团队中的环境-智能体交互及其在多智能体系统最短时间协调控制中的应用
- 批准号:
1160780 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
- 批准号:
1234286 - 财政年份:2012
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Multiscale, Beamlet-Based Data Processing for the Solution of Shortest-Path Problems with Applications to Embedded Vehicle Autonomy
用于解决嵌入式车辆自主应用中最短路径问题的多尺度、基于子束的数据处理
- 批准号:
0856565 - 财政年份:2009
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
相似海外基金
CPS: Synergy: Collaborative Research: Towards Effective and Efficient Sensing-Motion Co-Design of Swarming Cyber-Physical Systems
CPS:协同:协作研究:实现集群网络物理系统的有效和高效的传感-运动协同设计
- 批准号:
1936599 - 财政年份:2019
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: DEUS: Distributed, Efficient, Ubiquitous and Secure Data Delivery Using Autonomous Underwater Vehicles
CPS:协同:协作研究:DEUS:使用自主水下航行器进行分布式、高效、无处不在和安全的数据传输
- 批准号:
1853257 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1645578 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: TickTalk: Timing API for Federated Cyberphysical Systems
CPS:协同:协作研究:TickTalk:联合网络物理系统的计时 API
- 批准号:
1646235 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Control of Vehicular Traffic Flow via Low Density Autonomous Vehicles
CPS:协同:协作研究:通过低密度自动驾驶车辆控制车流
- 批准号:
1854321 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Foundations of Secure Cyber-Physical Systems of Systems
CPS:协同:协作研究:安全网络物理系统的基础
- 批准号:
1901728 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
CPS: TTP Option: Synergy: Collaborative Research: An Executable Distributed Medical Best Practice Guidance (EMBG) System for End-to-End Emergency Care from Rural to Regional Center
CPS:TTP 选项:协同:协作研究:用于从农村到区域中心的端到端紧急护理的可执行分布式医疗最佳实践指导 (EMBG) 系统
- 批准号:
1842710 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CPS: Medium: Collaborative Research: Synergy: Augmented reality for control of reservation-based intersections with mixed autonomous-non autonomous flows
CPS:中:协作研究:协同作用:用于控制具有混合自主-非自主流的基于预留的交叉口的增强现实
- 批准号:
1739964 - 财政年份:2018
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
- 批准号:
1646566 - 财政年份:2017
- 资助金额:
$ 56万 - 项目类别:
Standard Grant
Synergy: Collaborative: CPS-Security: End-to-End Security for the Internet of Things
协同:协作:CPS-安全:物联网的端到端安全
- 批准号:
1822332 - 财政年份:2017
- 资助金额:
$ 56万 - 项目类别:
Continuing Grant














{{item.name}}会员




