RI: Small: Incremental Sampling-Based Algorithms and Stochastic Optimal Control on Random Graphs

RI:小:基于增量采样的算法和随机图上的随机最优控制

基本信息

  • 批准号:
    1617630
  • 负责人:
  • 金额:
    $ 33.58万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2020-12-31
  • 项目状态:
    已结题

项目摘要

Autonomous and semi-autonomous vehicles and systems have become indispensable both for civil (fire-fighting, nuclear waste handling, law-enforcement, deep ocean exploration and drilling, weather forecasting, transportation) and military (guided missiles, spacecraft, unmanned drones) applications. Automation, when coupled with information technology, will continue to permeate our society at ever increasing levels. Autonomous systems, which, thus far, have been a crucial component in homeland security applications (e.g., border patrol, persistent monitoring, etc), are now seen as a key factor of empowering people in their daily lives across work, leisure, and domestic tasks. The next generation of autonomous systems will operate and interact with humans in the household or the office. The recent investment of information technology companies such as Amazon and Google in robotics technology is likely to accelerate the adoption of these new technologies by the general public. The safe and reliable operation of all these autonomous systems hinges crucially on their ability to reason and navigate about their environment. The theory and methodologies developed in this research will make it possible to run highly sophisticated algorithms inside the "brain" of these autonomous systems to enable optimal decision-making, thus increasing their reliability, predictability, performance and fail-safe operation. Self-driving vehicles, anthropomorphic robots, aerial drones, manufacturing automation systems, and precision surgical instruments among others, will all benefit from the results of this research.The proposed research tackles a fundamental problem in the area of motion planning and trajectory generation for robotic and intelligent autonomous systems. A serious bottleneck in solving such problems under limited resource constraints (e.g., computer memory, time) is their high dimensionality that precludes the naïve use of discretizing the (continuous) state space. In this research it is proposed to develop new incremental, optimal sampling-based motion planning algorithms with improved convergence rates over existing methods, so as to enable close-to-real-time trajectory generation for autonomous vehicles operating in an uncertain and dynamically changing environment. To achieve this objective, this research will build on recent results and ideas from Rapidly-exploring Random Graphs (RRG), along with relaxation methods borrowed from the areas of Asynchronous Dynamic Programming (ADP) and Machine Learning (ML). Specifically, recent advances from machine learning can be used to address the three main issues hindering the broader applicability of probabilistic sampling based motion planners to a wider variety of problems: collision checking, efficient sampling, and local steering. One main tenet of the proposed research is the exploitation of the inherent parallelism of the proposed algorithms, which -- coupled with the recent advances in multi-core computer architectures and GPUs -- will enable real-time computations.
自动和半自动车辆和系统已成为民用(消防、核废料处理、执法、深海勘探和钻井、天气预报、运输)和军事(制导导弹、航天器、无人驾驶飞机)应用不可或缺的工具。自动化加上资讯科技,将继续以更高的水平渗透我们的社会。到目前为止,自主系统一直是国土安全应用的关键组成部分(例如,边境巡逻、持续监测等),现在被视为增强人们日常生活中工作、休闲和家务劳动能力的一个关键因素。下一代自主系统将在家庭或办公室中与人类进行操作和互动。亚马逊和谷歌等信息技术公司最近对机器人技术的投资可能会加速普通大众对这些新技术的采用。所有这些自主系统的安全可靠运行,关键取决于它们对环境的推理和导航能力。 在这项研究中开发的理论和方法将使人们有可能在这些自主系统的“大脑”内运行高度复杂的算法,以实现最佳决策,从而提高其可靠性,可预测性,性能和故障安全操作。自动驾驶汽车、拟人机器人、无人机、制造自动化系统和精密手术器械等都将受益于这项研究的成果。拟议的研究解决了机器人和智能自主系统运动规划和轨迹生成领域的一个基本问题。在有限的资源约束下解决这类问题的严重瓶颈(例如,计算机内存,时间)是它们的高维性,这排除了对(连续)状态空间进行离散化的天真使用。在这项研究中,它提出了开发新的增量,最佳采样为基础的运动规划算法与现有的方法相比,提高了收敛速度,使接近实时的轨迹生成的自动驾驶汽车在不确定和动态变化的环境中运行。为了实现这一目标,本研究将建立在快速探索随机图(RRG)的最新结果和想法的基础上,沿着从异步动态编程(ADP)和机器学习(ML)领域借用的松弛方法。具体来说,机器学习的最新进展可用于解决阻碍基于概率采样的运动规划器更广泛适用于更广泛问题的三个主要问题:碰撞检查,有效采样和局部转向。所提出的研究的一个主要原则是利用所提出的算法的固有并行性,再加上多核计算机架构和GPU的最新进展,将实现实时计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiotis Tsiotras其他文献

Communication-Aware Map Compression for Online Path-Planning
用于在线路径规划的通信感知地图压缩
  • DOI:
    10.48550/arxiv.2309.13451
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Evangelos Psomiadis;Dipankar Maity;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Multi-Parameter Dependent Lyapunov Functions for the Stability Analysis of Parameter-Dependent LTI Systems
用于参数相关 LTI 系统稳定性分析的多参数相关 Lyapunov 函数
Zero-Sum Games Between Large-Population Heterogeneous Teams: A Reachability-based Analysis under Mean-Field Sharing
大规模异构团队之间的零和博弈:平均场共享下基于可达性的分析
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yue Guan;Mohammad Afshari;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Time-Optimal Control of Axisymmetric Rigid Spacecraft Using Two Controls
轴对称刚性航天器的两种控制的时间最优控制
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haijun Shen;Panagiotis Tsiotras
  • 通讯作者:
    Panagiotis Tsiotras
Stabilization and Tracking of Underactuated Axisymmetric Spacecraft with Bounded Control
  • DOI:
    10.1016/s1474-6670(17)40326-0
  • 发表时间:
    1998-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    Panagiotis Tsiotras;Jihao Luo
  • 通讯作者:
    Jihao Luo

Panagiotis Tsiotras的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Panagiotis Tsiotras', 18)}}的其他基金

CPS: Medium: Learning-Enabled Assistive Driving: Formal Assurances during Operation and Training
CPS:中:支持学习的辅助驾驶:操作和培训期间的正式保证
  • 批准号:
    2219755
  • 财政年份:
    2022
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
AstroSLAM - A Robust and Reliable Visual Localization and Pose Estimation Architecture for Space Robots in Orbit
AstroSLAM - 用于轨道空间机器人的稳健可靠的视觉定位和姿态估计架构
  • 批准号:
    2101250
  • 财政年份:
    2021
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
RI: Small: Robust Autonomy for Uncertain Systems using Randomized Trees
RI:小型:使用随机树实现不确定系统的鲁棒自治
  • 批准号:
    2008686
  • 财政年份:
    2020
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Continuing Grant
S&AS: FND: Decision-Making for Autonomous Systems with Limited Resources
S
  • 批准号:
    1849130
  • 财政年份:
    2019
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
Safe, Resilient and Efficient Operation of Autonomous Aerial and Ground Vehicles
自主空中和地面车辆的安全、弹性和高效运行
  • 批准号:
    1662542
  • 财政年份:
    2017
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: Adaptive Intelligence for Cyber-Physical Automotive Active Safety - System Design and Evaluation
CPS:协同:协作研究:网络物理汽车主动安全的自适应智能 - 系统设计和评估
  • 批准号:
    1544814
  • 财政年份:
    2015
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
NRI: Information-Theoretic Trajectory Optimization for Motion Planning and Control with Applications to Space Proximity Operations
NRI:运动规划和控制的信息理论轨迹优化及其在空间邻近操作中的应用
  • 批准号:
    1426945
  • 财政年份:
    2014
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
Environment-Agent Interaction in Autonomous Networked Teams with Applications to Minimum-Time Coordinated Control of Multi-Agent Systems
自治网络团队中的环境-智能体交互及其在多智能体系统最短时间协调控制中的应用
  • 批准号:
    1160780
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Advanced Driver Assistance and Active Safety Systems through Driver's Controllability Augmentation and Adaptation
GOALI/合作研究:通过驾驶员可控性增强和适应实现高级驾驶员辅助和主动安全系统
  • 批准号:
    1234286
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
Multiscale, Beamlet-Based Data Processing for the Solution of Shortest-Path Problems with Applications to Embedded Vehicle Autonomy
用于解决嵌入式车辆自主应用中最短路径问题的多尺度、基于子束的数据处理
  • 批准号:
    0856565
  • 财政年份:
    2009
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

SHF: Small: INCA: Incremental Analysis of Software Specification for Evolving Systems
SHF:小型:INCA:不断发展的系统软件规范的增量分析
  • 批准号:
    2204536
  • 财政年份:
    2022
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
EAGER: III: Small: Green Granular Neural Networks with Fast FPGA-based Incremental Transfer Learning
EAGER:III:小型:具有基于 FPGA 的快速增量迁移学习的绿色粒度神经网络
  • 批准号:
    2234227
  • 财政年份:
    2022
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
Collaborative Research:CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
  • 批准号:
    2007274
  • 财政年份:
    2020
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
Collaborative Research: CNS Core: Small: Intermittent and Incremental Inference with Statistical Neural Network for Energy-Harvesting Powered Devices
合作研究:CNS 核心:小型:利用统计神经网络对能量收集供电设备进行间歇和增量推理
  • 批准号:
    2007302
  • 财政年份:
    2020
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
AF: Small: Incremental and Asynchronous Projective Splitting Methods for Mathematical Programming
AF:小:数学规划的增量和异步投影分裂方法
  • 批准号:
    1617617
  • 财政年份:
    2016
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
NeTS: Small: Exerting Logically Centralized Control over Legacy Switches via Incremental SDN Deployment
NeTS:小型:通过增量 SDN 部署对传统交换机进行逻辑集中控制
  • 批准号:
    1618339
  • 财政年份:
    2016
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
CIF: Small: Approaching Capacity in High Throughput Communication Systems with Incremental Redundancy
CIF:小:通过增量冗余接近高吞吐量通信系统的容量
  • 批准号:
    1618272
  • 财政年份:
    2016
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
SHF: Small: Incremental Inductive Verification: A New Direction for Model Checking
SHF:小型:增量感应验证:模型检查的新方向
  • 批准号:
    1219067
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Standard Grant
Laser-assisted incremental sheet metal forming process to obtain complicated shaped and small grain sized product
激光辅助渐进式金属板材成形工艺获得复杂形状和小晶粒产品
  • 批准号:
    24560129
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RI: Small: Incremental Speech Processing for Rapid Dialogue
RI:小型:用于快速对话的增量语音处理
  • 批准号:
    1219253
  • 财政年份:
    2012
  • 资助金额:
    $ 33.58万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了