Classificaition of subfactors in operator algebra and its applications

算子代数子因子的分类及其应用

基本信息

  • 批准号:
    10640200
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 2000
  • 项目状态:
    已结题

项目摘要

I have studied a method to extend an endomorphism of a smaller operator algebra to a larger algebra, using a braiding. This was first defined by Longo and Rehren, studied by Xu in a slightly different setting. On the other hand, Ocneanu has studied theory of a chiral projector in connection to the Dynkin diagrams in a situation which looked entirely different from the setting of Longo-Rehren. Bockenhauer, Evans and I have extended definitions of both the α-induction and the chiral projector, and proved that they give the same construction. We have obatined several structure results for modular invariants and fusion rule algebras.Next I studied subfactors arising from a net of von Neumann algebras on S^1 and four intervals on it with Longo and Muger. We have proved that Xu's construction gives a subfactor isomorphic to the Longo-Rehren construction and prove that non-degeneracy of a braiding holds automatically in this setting.We have determined the structure of M-M fusion rule algebras arising from chiral α-induction using one braiding in terms of chiral branching coefficients. As applications, we have determined the full M-M fusion rule algebra structures for all modular invariants associated with SU(2)_κ and modular invariants arising from conformal inclusions associated with SU(3)_κ.We have further studied the Longo-Rehren subfactors arising from α-induction. We can describe the tensor categories arising from the Longo-Rehren subfactors. We have further shown that if the braiding is non-degenerate, then the subfactor we obtain as a dual of the usual Longo-Rehren subfactor after α-induction is isomorphic to the one arising from the generalized Longo-Rehren construction.
研究了利用辫子将一个小算子代数的自同态推广到一个大算子代数的方法。这一概念最早由Longo和Luberren定义,由Xu在一个稍微不同的环境中进行研究。另一方面,Ocneanu研究了理论的手征投影机连接到Dynkin图的情况下,看起来完全不同的设置隆戈-Escherren。Bockenhauer,Evans和我推广了α-诱导和手征投影的定义,并证明了它们给出了相同的结构。我们已经得到了模不变量和融合规则代数的几个结构结果。接下来,我们利用Longo和Muger研究了S^1上的vonNeumann代数网及其上的四个区间所产生的子因子。我们证明了Xu构造给出了一个同构于Longo-Wehren构造的子因子,证明了在此情形下辫子的非退化性自动成立,并利用手征分支系数确定了由手征α-诱导产生的M-M融合规则代数的结构.作为应用,我们确定了SU(2)_κ模不变量和SU(3)_κ共形包含模不变量的完全M-M融合规则代数结构,并进一步研究了由α-归纳产生的Longo-Escherren子因子.我们可以描述由Longo-Escherren子因子产生的张量范畴。我们进一步证明了,如果辫子是非退化的,那么我们在α-归纳后得到的作为通常的Longo-Escherren子因子的对偶的子因子同构于由广义Longo-Escherren构造产生的子因子.

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Bockanlaner D.E.Evans.Y.Kawahigashi: "On α-induction, chiral projectors and modular invariants for subfactors"Commun.Math.Phys.. 208. 429-487 (1999)
J.Bockanlaner D.E.Evans.Y.Kawahigashi:“关于 α 归纳、手征投影仪和子因子的模不变量”Commun.Math.Phys.. 208. 429-487 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.BSckarhaner D.E.Evans C.Kawahigashi: "Chirol Structure of modular invaviants for subfactors"Commun.Math.Phys.. 210. 733-784 (2000)
J.BSckarhaner D.E.Evans C.Kawahigashi:“子因子的模不变量的 Chirol 结构”Commun.Math.Phys.. 210. 733-784 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Bockenhauer,D.E.Evans,Y.Kawahigashi: "On α-induction,chiral generators and modular invariants for subfactors"Communications in Mathematical Physics. 208. 429-487 (1999)
J.Bockenhauer、D.E.Evans、Y.Kawahigashi:“关于 α 归纳、手性生成器和子因子的模不变量”数学物理通讯 208. 429-487 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
D.E.Evans Y.Kawahigashi: "Quantum Symmotries on operator algebras"Oyford University Press. 848 (1998)
D.E.Evans Y.Kawahigashi:“算子代数的量子对称”奥伊福德大学出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Kawahigashi, R.Longo and M.Muger: "Multi-interval subfactors and modularity of representations in conformal field theory"Commun.Math.Phys.. (to appear).
Y.Kawahigashi、R.Longo 和 M.Muger:“共形场理论中的多区间子因子和表示模块性”Commun.Math.Phys..(待发表)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWAHIGASHI Yasuyuki其他文献

KAWAHIGASHI Yasuyuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWAHIGASHI Yasuyuki', 18)}}的其他基金

Synthetic Studies on Operator Algebras and Mathematical Physics
算子代数与数学物理的综合研究
  • 批准号:
    19204015
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Operator algebras and mathematical physics
算子代数和数学物理
  • 批准号:
    16340045
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Quadratic fusion categories: A frontier in subfactor theory
二次融合类别:子因子理论的前沿
  • 批准号:
    DP170103265
  • 财政年份:
    2017
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Discovery Projects
Subfactor Theory in Mathematics and Physics Conference 2014
2014年数学物理会议子因子理论
  • 批准号:
    1400275
  • 财政年份:
    2014
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
The Haagerup subfactor, K-theory and conformal field theory
Haagerup 子因子、K 理论和共形场论
  • 批准号:
    EP/J003352/1
  • 财政年份:
    2012
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Research Grant
On the research of a geometric realization of subfactors and its applications
子因子的几何实现及其应用研究
  • 批准号:
    22540234
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on topological quantum field theories by operator algebras
用算子代数研究拓扑量子场论
  • 批准号:
    18740037
  • 财政年份:
    2006
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Operator algebras and mathematical physics
算子代数和数学物理
  • 批准号:
    16340045
  • 财政年份:
    2004
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
作用素環論の低次元トポロジーへの応用
算子代数理论在低维拓扑中的应用
  • 批准号:
    15740043
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Study of recent topics on operator algebras
算子代数近期课题研究
  • 批准号:
    14340056
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Classification of coquasi-Hopf algebras by tensor equivalence and constructions of new braidings
通过张量等价对 coquasi-Hopf 代数进行分类和新编织的构造
  • 批准号:
    14540007
  • 财政年份:
    2002
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
パラグループ理論と量子群、位相的場の理論、共形場理論等との関わりの研究
研究副群论与量子群、拓扑场论、共形场论等的关系。
  • 批准号:
    13740103
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了