Stochastic Analysis of Gaussian Fractional Noises
高斯分数噪声的随机分析
基本信息
- 批准号:0904538
- 负责人:
- 金额:$ 34.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to establish new results in different topics of stochastic analysis. First a new approach for proving the smoothness of the density for solutions to stochastic partial differential equations will be introduced. This method is based on a stochastic version of Feynman-Kac's formula for the Malliavin derivative of the solution. Moreover, the techniques of Malliavin calculus will be applied to derive upper and lower Gaussian estimates for the density of the solution. A second objective of the project is to obtain results on the rate of convergence of Euler-type numerical approximation schemes for stochastic differential equations driven by a fractional Brownian motion. The application of the techniques of Malliavin calculus to analyze numerical approximation schemes for backward stochastic differential equation is also one of the topics of the project. Another research direction deals with the proof of central and noncentral limit theorems for a large variety of functionals of a Gaussian process, including multiple stochastic integrals, and weighted power variations. The project also aims to establish Feynman-Kac's formulas for the one-dimensional stochastic heat equation driven by a fractional multiplicative Gaussian noise.Stochastic analysis is an active area in mathematics which is motivated by the study of ordinary and partial differential equations perturbed by a random noise. These equations play a central role as models in many areas of physics and economics. The application of these equations in concrete problems requires suitable numerical approximation schemes, and convenient estimates for the probability distribution of the solution. This project aims to make new relevant contributions to these problems, by developing and applying powerful mathematical techniques such as the Malliavin calculus. On the other hand, motivated by some applications in hydrology, telecommunications and mathematical finance, there has been a recent interest in input noises possessing a long memory property such as the fractional Brownian motion. The development of a stochastic calculus with respect to these long memory processes is also one of the aims of this project.
该项目旨在建立随机分析的不同主题的新成果。 首先介绍了一种新的证明随机偏微分方程解的密度光滑性的方法。这种方法是基于一个随机版本的费曼-卡茨公式的Malliavin导数的解决方案。 此外,Malliavin演算的技术将被应用到导出的解决方案的密度的上,下高斯估计。 该项目的第二个目标是获得由分数布朗运动驱动的随机微分方程的欧拉型数值逼近方案的收敛速度的结果。 应用Malliavin演算的技巧分析倒向随机微分方程的数值逼近方案也是该项目的主题之一。 另一 研究方向涉及高斯过程的各种泛函的中心和非中心极限定理的证明,包括多重随机积分和加权幂变分。该项目还旨在建立分数乘性高斯噪声驱动的一维随机热方程的Feynman-Kac公式。随机分析是数学中的一个活跃领域,其动机是研究受随机噪声扰动的常微分方程和偏微分方程。这些方程在物理学和经济学的许多领域中作为模型发挥着核心作用。 这些方程在具体问题中的应用需要适当的数值逼近方案和方便的估计 解的概率分布。 该项目旨在通过开发和应用强大的数学技术,如Malliavin演算,为这些问题做出新的相关贡献。另一方面,在水文学、电信和数学金融等领域的一些应用的激励下,最近人们对具有长记忆特性的输入噪声(如分数布朗运动)产生了兴趣。关于这些长记忆过程的随机微积分的发展也是这个项目的目标之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Nualart其他文献
Multiple Wiener-Ito integrals possessing a continuous extension
- DOI:
10.1007/bf01377634 - 发表时间:
1990-03-01 - 期刊:
- 影响因子:1.600
- 作者:
David Nualart;Moshe Zakai - 通讯作者:
Moshe Zakai
Skorohod integral of a product of two stochastic processes
- DOI:
10.1007/bf02214263 - 发表时间:
1996-10-01 - 期刊:
- 影响因子:0.600
- 作者:
David Nualart;Philip Protter - 通讯作者:
Philip Protter
Weak convergence to the law of two-parameter continuous processes
- DOI:
10.1007/bf00532118 - 发表时间:
1981-01-01 - 期刊:
- 影响因子:1.600
- 作者:
David Nualart - 通讯作者:
David Nualart
Smoothness of density for stochastic differential equations with Markovian switching
具有马尔可夫切换的随机微分方程的密度平滑度
- DOI:
10.3934/dcdsb.2018307 - 发表时间:
2014-09 - 期刊:
- 影响因子:0
- 作者:
Yaozhong Hu;David Nualart;Xiaobin Sun;Yingchao Xie - 通讯作者:
Yingchao Xie
Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise
- DOI:
10.1023/a:1017998901460 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:0.800
- 作者:
István Gyöngy;David Nualart - 通讯作者:
David Nualart
David Nualart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Nualart', 18)}}的其他基金
Stochastic Analysis and Asymptotic Problems
随机分析和渐近问题
- 批准号:
1811181 - 财政年份:2018
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Stochastic Partial Differential Equations, Fractional Noises and Limit Theorems
随机偏微分方程、分数噪声和极限定理
- 批准号:
1512891 - 财政年份:2015
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Stochastic Analysis of Gaussian Fractional Noises
高斯分数噪声的随机分析
- 批准号:
1208625 - 财政年份:2012
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Seminar on Stochastic Processes 2012
2012年随机过程研讨会
- 批准号:
1140866 - 财政年份:2011
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Stochastic Calculus of Variations and Stochastic Analysis with Fractal Noises
随机变分演算和分形噪声随机分析
- 批准号:
0604207 - 财政年份:2006
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
用“后合成核磁共振分析”(retrobiosynthetic NMR analysis)技术阐明青蒿素生物合成途径
- 批准号:30470153
- 批准年份:2004
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Gaussian Processes for Scientific Machine Learning: Theoretical Analysis and Computational Algorithms
职业:科学机器学习的高斯过程:理论分析和计算算法
- 批准号:
2337678 - 财政年份:2024
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
- 批准号:
2311306 - 财政年份:2023
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Unsupervised and Semisupervised Heterogeneity Analysis Based on Gaussian Graphical Models
基于高斯图模型的无监督和半监督异质性分析
- 批准号:
2209685 - 财政年份:2022
- 资助金额:
$ 34.76万 - 项目类别:
Standard Grant
Response analysis of dynamic systems subjected to non-Gaussian random excitation with a wide range of kurtosis
宽峰度非高斯随机激励动态系统的响应分析
- 批准号:
18K13712 - 财政年份:2018
- 资助金额:
$ 34.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Functional Copula Model for Nonlinear and Non-Gaussian Functional Data Analysis: Graphical Models, Dimension Reduction, and Variable Selection
用于非线性和非高斯函数数据分析的函数 Copula 模型:图形模型、降维和变量选择
- 批准号:
1713078 - 财政年份:2017
- 资助金额:
$ 34.76万 - 项目类别:
Continuing Grant
Statistical feature extraction for the increased acuuracy of maternal-fetal electrocardiography under non-gaussian noise conditions with independent component analysis
通过独立成分分析提取统计特征,提高非高斯噪声条件下母胎心电图的准确性
- 批准号:
468947-2014 - 财政年份:2016
- 资助金额:
$ 34.76万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Statistical feature extraction for the increased acuuracy of maternal-fetal electrocardiography under non-gaussian noise conditions with independent component analysis
通过独立成分分析提取统计特征,提高非高斯噪声条件下母胎心电图的准确性
- 批准号:
468947-2014 - 财政年份:2015
- 资助金额:
$ 34.76万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Statistical feature extraction for the increased acuuracy of maternal-fetal electrocardiography under non-gaussian noise conditions with independent component analysis
通过独立成分分析提取统计特征,提高非高斯噪声条件下母胎心电图的准确性
- 批准号:
468947-2014 - 财政年份:2014
- 资助金额:
$ 34.76万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Reliability analysis of nonlinear systems subjected to non-Gaussian random excitation
非高斯随机激励下非线性系统的可靠性分析
- 批准号:
26820073 - 财政年份:2014
- 资助金额:
$ 34.76万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Gaussian QCD Sum-Rule Analysis of Scalar Meson Mixing
标量介子混合的高斯 QCD 和律分析
- 批准号:
449370-2013 - 财政年份:2013
- 资助金额:
$ 34.76万 - 项目类别:
University Undergraduate Student Research Awards