Stochastic Calculus of Variations and Stochastic Analysis with Fractal Noises
随机变分演算和分形噪声随机分析
基本信息
- 批准号:0604207
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2006
- 资助国家:美国
- 起止时间:2006-06-15 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project aims to establish new results in three diffeent topics of stochastic analysis. First, a new approach for estimating the negative moments of the solutions to linear stochastic partial differential equations of parabolic type will be developed. These estimates will allow us to derive the regularity of the probability law of the solution at a finite number of points using the techniques of Malliavin Calculus. A second objective is to further develop the stochastic calculus with respect to the fractional Brownian motion and related processes using both Malliavin Calculus and path-wise techniques. Our third goal is to establish chaotical central limit theorems for the asymptotic behavior of different types of functionals of a Gaussian process. Examples of these functionals include the self-intersection local time of the fractional Brownian motion, and power variation and related functionals of stochastic integrals.Stochastic analysis is a modern area in mathematics which aims to study ordinary and partial differential equations perturbed by a random noise. These equations play a central role as models in many areas in physics and economics. In order to derive important properties of the solutions, like to compute the probability that the solution takes values in some interval, one needs to apply suitable mathematical techniques like the Ito Calculus and the Malliavin Calculus. We aim to make substantial contributions to the development of these thecniques and their applications to stochastic partial differential equations. On the other hand, while the classical input noise used has independent increments, motivated by some applications in hydrology, telecommunications and mathematical finance, there has been a recent interest in input noises possessing a long memory property like fractional Brownian motion. The development of a stochastic calculus with respect to these long memory processes is also one of the aims of this project.
该项目旨在建立随机分析的三个重要主题的新成果。首先,我们将发展一个新的方法来估计线性随机抛物型偏微分方程解的负矩。这些估计将允许我们使用Malliavin演算的技术在有限数量的点处导出解的概率律的正则性。 第二个目标是进一步发展的随机微积分相对于分数布朗运动和相关过程使用Malliavin演算和路径明智的技术。我们的第三个目标是建立一个高斯过程的不同类型的泛函的渐近行为的混沌中心极限定理。这些泛函的例子包括分数布朗运动的自相交局部时,以及随机积分的幂变分和相关泛函。随机分析是数学中的一个现代领域,旨在研究受随机噪声扰动的常微分方程和偏微分方程。 这些方程在物理学和经济学的许多领域中作为模型发挥着核心作用。 为了得到解的重要性质,比如计算解在某个区间取值的概率,需要应用适当的数学技巧,比如伊藤演算和马利亚文演算。我们的目标是为这些理论的发展及其在随机偏微分方程中的应用做出实质性的贡献。 另一方面,虽然经典的输入噪声具有独立的增量,在水文,电信和数学金融中的一些应用的动机,有最近的兴趣在输入噪声具有长记忆特性,如分数布朗运动。关于这些长记忆过程的随机微积分的发展也是这个项目的目标之一。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Nualart其他文献
Multiple Wiener-Ito integrals possessing a continuous extension
- DOI:
10.1007/bf01377634 - 发表时间:
1990-03-01 - 期刊:
- 影响因子:1.600
- 作者:
David Nualart;Moshe Zakai - 通讯作者:
Moshe Zakai
Skorohod integral of a product of two stochastic processes
- DOI:
10.1007/bf02214263 - 发表时间:
1996-10-01 - 期刊:
- 影响因子:0.600
- 作者:
David Nualart;Philip Protter - 通讯作者:
Philip Protter
Weak convergence to the law of two-parameter continuous processes
- DOI:
10.1007/bf00532118 - 发表时间:
1981-01-01 - 期刊:
- 影响因子:1.600
- 作者:
David Nualart - 通讯作者:
David Nualart
Smoothness of density for stochastic differential equations with Markovian switching
具有马尔可夫切换的随机微分方程的密度平滑度
- DOI:
10.3934/dcdsb.2018307 - 发表时间:
2014-09 - 期刊:
- 影响因子:0
- 作者:
Yaozhong Hu;David Nualart;Xiaobin Sun;Yingchao Xie - 通讯作者:
Yingchao Xie
Implicit Scheme for Stochastic Parabolic Partial Diferential Equations Driven by Space-Time White Noise
- DOI:
10.1023/a:1017998901460 - 发表时间:
1997-01-01 - 期刊:
- 影响因子:0.800
- 作者:
István Gyöngy;David Nualart - 通讯作者:
David Nualart
David Nualart的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Nualart', 18)}}的其他基金
Stochastic Analysis and Asymptotic Problems
随机分析和渐近问题
- 批准号:
1811181 - 财政年份:2018
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Stochastic Partial Differential Equations, Fractional Noises and Limit Theorems
随机偏微分方程、分数噪声和极限定理
- 批准号:
1512891 - 财政年份:2015
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Stochastic Analysis of Gaussian Fractional Noises
高斯分数噪声的随机分析
- 批准号:
1208625 - 财政年份:2012
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Stochastic Analysis of Gaussian Fractional Noises
高斯分数噪声的随机分析
- 批准号:
0904538 - 财政年份:2009
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似海外基金
Predictable Variations in Stochastic Calculus
随机微积分的可预测变化
- 批准号:
EP/Y024524/1 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Research Grant
Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
- 批准号:
2247544 - 财政年份:2023
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
The Calculus of Variations and its applications in solving problems coming from Mechanics
变分法及其在解决力学问题中的应用
- 批准号:
574065-2022 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
University Undergraduate Student Research Awards
Calculus of variations and optimal mass transportation: theory and applications
变分法和最佳公共交通:理论与应用
- 批准号:
RGPIN-2019-06173 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Harmonic Analysis and the Stability of Singularities in the Calculus of Variations
职业:变分演算中的调和分析和奇点稳定性
- 批准号:
2143719 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Defects and patterns in the Calculus of Variations
变分法的缺陷和模式
- 批准号:
RGPIN-2018-05588 - 财政年份:2022
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Calculus of Variations and Limit Theorems
随机变分和极限定理
- 批准号:
2054735 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Interacting Free Boundaries in the Calculus of Variations
变分法中相互作用的自由边界
- 批准号:
2055617 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
CAREER: Fractional Partial Differential Equations, Harmonic Analysis, and Their Applications in the Geometric Calculus of Variations and Quantitative Topology
职业:分数阶偏微分方程、调和分析及其在变分几何微积分和定量拓扑中的应用
- 批准号:
2044898 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Calculus of variations and optimal mass transportation: theory and applications
变分法和最佳公共交通:理论与应用
- 批准号:
RGPIN-2019-06173 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Discovery Grants Program - Individual