Geometric Structures
几何结构
基本信息
- 批准号:0905819
- 负责人:
- 金额:$ 41.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-15 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There has recently been a tremendous amount of progress in the areas of Kleinian groups and the geometry of 3-manifolds. Several long-standing conjectures have been solved, the most spectacular being Perelman's proof of the Geometrization Conjecture, but also including the Ending Lamination Conjecture (Minsky, Brock and Canary) and the Tameness Conjecture (Agol, Calegari-Gabai). The goal of this proposal is to get a more exact understanding of how geometric structures on 3-manifolds are reflected in their topological properties. Since hyperbolic structures on closed manifolds are unique, studying them through families typically requires allowing singularities or obtaining them by gluing flexible manifolds with boundary. Getting explicit, quantitative information about a geometric structure requires a refined understanding of the flexible structures from which they are obtained. These variational techniques can also be applied to understand other types of geometric structures, such as projective and Lorentzian structures, that don't have an invariant metric. We will also consider interesting questions about geometric structures in other dimensions (hyperbolic structures in high dimensions, projective structures on surfaces).In this proposal we wish to study geometric structures in dimension 3, as well as other dimensions, using a combination of analytic, geometric, and topological tools. This is a very active and interesting area that has recently had an influx of new ideas and techniques. Geometry in dimension 3 is particularly appealing because it is visually accessible to many people, including beginning mathematics students and those with less technical backgrounds. It also has applications to physics and has led to the creation of a number of graphical interfaces that have been widely utilized.
最近在Kleinian群和3流形几何领域有了巨大的进展。几个长期存在的猜想已经得到了解决,最引人注目的是佩雷尔曼对几何化猜想的证明,但也包括结束层压猜想(Minsky, Brock和Canary)和驯服猜想(Agol, Calegari-Gabai)。本文的目标是更精确地理解3流形上的几何结构是如何反映在它们的拓扑性质上的。由于闭流形上的双曲结构是唯一的,通过族来研究它们通常需要允许奇点或通过粘接有边界的柔性流形来获得奇点。要获得关于几何结构的明确的、定量的信息,需要对从中获得这些信息的柔性结构有精细的理解。这些变分技术也可以应用于理解其他类型的几何结构,例如没有不变度规的投影和洛伦兹结构。我们还将考虑其他维度几何结构的有趣问题(高维的双曲结构,曲面上的投影结构)。在这个建议中,我们希望研究三维几何结构,以及其他维度,使用分析,几何和拓扑工具的组合。这是一个非常活跃和有趣的领域,最近有新的想法和技术涌入。三维几何特别吸引人,因为它对很多人来说都是直观的,包括初学数学的学生和那些没有太多技术背景的人。它还应用于物理学,并导致了许多图形界面的创建,这些界面已被广泛使用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Kerckhoff其他文献
Steven Kerckhoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Kerckhoff', 18)}}的其他基金
RNMS: Geometric Structures and Representation Varieties
RNMS:几何结构和表示种类
- 批准号:
1107263 - 财政年份:2011
- 资助金额:
$ 41.3万 - 项目类别:
Continuing Grant
Geometry and Dynamics of Moduli Spaces of Surfaces
曲面模空间的几何与动力学
- 批准号:
1105305 - 财政年份:2011
- 资助金额:
$ 41.3万 - 项目类别:
Continuing Grant
EMSW21-RTG: Training Students in Geometry and Topology at Stanford University
EMSW21-RTG:斯坦福大学几何和拓扑学培训学生
- 批准号:
0502401 - 财政年份:2005
- 资助金额:
$ 41.3万 - 项目类别:
Continuing Grant
Computer Infrastructure for Mathematical Research
用于数学研究的计算机基础设施
- 批准号:
9512533 - 财政年份:1995
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Mathematical Sciences: Three-Dimensional Hyperbolic Geometry
数学科学:三维双曲几何
- 批准号:
9102077 - 财政年份:1991
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 41.3万 - 项目类别:
Continuing Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
- 批准号:
EP/X014959/1 - 财政年份:2023
- 资助金额:
$ 41.3万 - 项目类别:
Research Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
2304636 - 财政年份:2023
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
- 批准号:
23K17661 - 财政年份:2023
- 资助金额:
$ 41.3万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
- 批准号:
23KJ1468 - 财政年份:2023
- 资助金额:
$ 41.3万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Reconsideration of the information geometric structures from the view point of deformed thermostatistics
从变形恒温学角度重新思考信息几何结构
- 批准号:
22K03431 - 财政年份:2022
- 资助金额:
$ 41.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 41.3万 - 项目类别:
Standard Grant
Geometric structures in low dimensions
低维几何结构
- 批准号:
RGPIN-2017-05403 - 财政年份:2022
- 资助金额:
$ 41.3万 - 项目类别:
Discovery Grants Program - Individual
Geometric hydrodynamics and Hamiltonian structures
几何流体动力学和哈密顿结构
- 批准号:
RGPIN-2019-05209 - 财政年份:2022
- 资助金额:
$ 41.3万 - 项目类别:
Discovery Grants Program - Individual