RNMS: Geometric Structures and Representation Varieties
RNMS:几何结构和表示种类
基本信息
- 批准号:1107263
- 负责人:
- 金额:$ 128.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-15 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
GEometric structures And Representation varieties (GEAR)This award supports a Research Network in the Mathematical Sciences. The GEometric structures And Representation varieties (GEAR) network encompasses mathematicians with backgrounds in diverse areas such as classical Teichmüller theory, discrete subgroups of Lie groups, 3- manifold topology, harmonic maps, dynamics, and moduli spaces of Higgs bundles and gauge theory. In recent years researchers in these areas have converged on common problems clustered around locally homogeneous structures on manifolds and moduli spaces of representations of finitely generated groups. New techniques and tools in one area have led to advances in another, and the contrasting points of view have highlighted new questions. The goals of the GEAR network are to spur cross-pollination of ideas from one area to another, to build a research community transcending current divisions, to train students and researchers to cross traditional boundaries, and by these means to advance the mathematics targeted by the network. The main programs of the network include visits and exchanges among researchers at different locations, focused meetings and workshops designed to bridge gaps between targeted subspecialties or to address specific problems, network-wide retreats to help forge a common research community, graduate student internships and summer research experiences, and cyber-networking activities. Spread over 46 locations in the US, Canada and Europe, the nodes of the network cover a wide range of institutions, including several with historically low levels of resources for research. The nodes are arranged around central hubs at The University of Illinois at Urbana-Champaign, The University of Maryland, and Stanford University, with the lead hub in Urbana-Champaign.GEAR Research Network home page: http://www.gear.math.illinois.edu
几何结构和表示品种(齿轮)这个奖项支持在数学科学的研究网络。 几何结构和表示多样性(GEAR)网络包括具有不同领域背景的数学家,如经典Teichmüller理论,李群的离散子群,3-流形拓扑,调和映射,动力学和希格斯包和规范理论的模空间。近年来,这些领域的研究人员已经集中在流形上的局部齐次结构和模空间上的共同问题上。一个领域的新技术和工具导致了另一个领域的进步,而截然不同的观点突出了新的问题。GEAR网络的目标是促进思想从一个领域到另一个领域的交叉授粉,建立一个超越当前分歧的研究社区,培养学生和研究人员跨越传统界限,并通过这些手段推进网络目标的数学。该网络的主要项目包括不同地点的研究人员之间的访问和交流,旨在弥合目标子专业之间的差距或解决具体问题的重点会议和研讨会,全网络务虚会,以帮助建立一个共同的研究社区,研究生实习和夏季研究经验,以及网络网络活动。该网络的节点分布在美国、加拿大和欧洲的46个地点,覆盖范围广泛的机构,包括几个研究资源水平历史性较低的机构。这些节点分布在伊利诺伊大学厄巴纳-香槟分校、马里兰州大学和斯坦福大学的中心枢纽周围,主要枢纽位于厄巴纳-香槟分校。GEAR Research Network主页:http://www.gear.math.illinois.edu
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Kerckhoff其他文献
Steven Kerckhoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Kerckhoff', 18)}}的其他基金
Geometry and Dynamics of Moduli Spaces of Surfaces
曲面模空间的几何与动力学
- 批准号:
1105305 - 财政年份:2011
- 资助金额:
$ 128.37万 - 项目类别:
Continuing Grant
EMSW21-RTG: Training Students in Geometry and Topology at Stanford University
EMSW21-RTG:斯坦福大学几何和拓扑学培训学生
- 批准号:
0502401 - 财政年份:2005
- 资助金额:
$ 128.37万 - 项目类别:
Continuing Grant
Computer Infrastructure for Mathematical Research
用于数学研究的计算机基础设施
- 批准号:
9512533 - 财政年份:1995
- 资助金额:
$ 128.37万 - 项目类别:
Standard Grant
Mathematical Sciences: Three-Dimensional Hyperbolic Geometry
数学科学:三维双曲几何
- 批准号:
9102077 - 财政年份:1991
- 资助金额:
$ 128.37万 - 项目类别:
Standard Grant
Hyperbolic Structures on 3-Manifolds
3 流形上的双曲结构
- 批准号:
7905415 - 财政年份:1979
- 资助金额:
$ 128.37万 - 项目类别:
Standard Grant
Hyperbolic Structures on 3-Manifolds
3 流形上的双曲结构
- 批准号:
7825320 - 财政年份:1979
- 资助金额:
$ 128.37万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Geometric and topological mechanics of flexible structures
职业:柔性结构的几何和拓扑力学
- 批准号:
2338492 - 财政年份:2024
- 资助金额:
$ 128.37万 - 项目类别:
Continuing Grant
Geometric structures and twisted supersymmetry
几何结构和扭曲超对称
- 批准号:
EP/X014959/1 - 财政年份:2023
- 资助金额:
$ 128.37万 - 项目类别:
Research Grant
Deformation spaces of geometric structures
几何结构的变形空间
- 批准号:
2304636 - 财政年份:2023
- 资助金额:
$ 128.37万 - 项目类别:
Standard Grant
Understanding of physical properties on carbon networks with unique geometric structures
了解具有独特几何结构的碳网络的物理特性
- 批准号:
23K17661 - 财政年份:2023
- 资助金额:
$ 128.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Geometric structures on surfaces and harmonic maps
表面上的几何结构和调和图
- 批准号:
23KJ1468 - 财政年份:2023
- 资助金额:
$ 128.37万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
- 批准号:
2304033 - 财政年份:2023
- 资助金额:
$ 128.37万 - 项目类别:
Standard Grant
Reconsideration of the information geometric structures from the view point of deformed thermostatistics
从变形恒温学角度重新思考信息几何结构
- 批准号:
22K03431 - 财政年份:2022
- 资助金额:
$ 128.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: Deformations of Geometric Structures in Current Mathematics
合作研究:当代数学中几何结构的变形
- 批准号:
2212148 - 财政年份:2022
- 资助金额:
$ 128.37万 - 项目类别:
Standard Grant
Geometric structures in low dimensions
低维几何结构
- 批准号:
RGPIN-2017-05403 - 财政年份:2022
- 资助金额:
$ 128.37万 - 项目类别:
Discovery Grants Program - Individual
Study on geometric structures of curvature flows and submanifolds
曲率流和子流形的几何结构研究
- 批准号:
22K03303 - 财政年份:2022
- 资助金额:
$ 128.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)