AMC-SS: Problems in Mathematical Finance
AMC-SS:数学金融问题
基本信息
- 批准号:0906257
- 负责人:
- 金额:$ 28.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).Quantifying, managing and pricing risk is not only important for the big players in the economy but has become increasingly important for every individual, who are trying to reduce the risk of outliving their wealth through their retirement funds, and the institutional investors representing them. The financial markets provide the necessary liquidity for the rest of the economy to function well, and not understanding the nature of the risk taken, the mispricing of the risk and an inadequate oversight, can have dramatic impacts on the welfare of our society, as the latest crisis demonstrated one more time. Consequently there has been an intense research effort, which is embodied in the field of financial mathematics, to solve the new mathematical challenges. This new field takes its roots in stochastic analysis and also frequently interacts with other fields of mathematics such as the theory of partial differential equations and functional analysis. This project resolves some fundamental questions concerning the important models of the field that remain unanswered. Additionally, new models which take into account the discrete, asynchronous and non-stationary nature of the observations will be developed and the mathematical and computational challenges for new problems of interest will be resolved. Optimization problems from a retiree's perspective (with an objective criterion) and an institutional investor perspective (with risk constraints imposed by regulators) are to be analyzed. Developing parsimonious models and analyzing the inverse problems for structured credit products, which were developed to provide insurance against (correlated) default of issuers, is another goal.More specifically, the first part of the proposed project will settle open problems in the theory of Optimal Stopping and related free boundary problems that arise in Financial Mathematics. The solutions in the second part have direct applications to many practical control problems since the nature of observations in many applications is discrete, asynchronous and non-stationary (i.e. the nature of the source of observation change with time). In the third part utility maximization problems with probability of lifetime ruin, occupation time, or other optimization and/or risk constraints will be considered. Optimal control/stopping problems with non-linear expectations will be discussed. These lead to new mathematical challenges which will lead to new methodological developments. The effects of uncertain investment environment and learning on the optimal investment strategies will also be investigated. The dramatic losses in the credit derivative markets last year shows that appropriate modeling and pricing of credit derivatives is a challenging open problem. In the fourth path, the investigator will develop effective models, solve the corresponding inverse problems and price over the counter options.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。量化,管理和定价风险不仅对经济中的大玩家很重要,而且对每个人都变得越来越重要,他们试图通过退休基金来减少他们的财富所带来的风险,以及代表他们的机构投资者。金融市场为经济的其他部分提供了必要的流动性,使其能够良好运作,而不了解所承担风险的性质,错误定价风险和监管不足,可能会对我们社会的福利产生巨大影响,最近的危机再次证明了这一点。因此,人们在金融数学领域进行了大量的研究工作,以解决新的数学挑战。这个新领域的根源在于随机分析,也经常与其他数学领域相互作用,如偏微分方程理论和泛函分析。 这个项目解决了一些关于该领域的重要模型的基本问题,这些问题仍然没有答案。 此外,还将开发考虑到观测的离散、异步和非平稳性质的新模型,并将解决新问题的数学和计算挑战。从退休人员的角度(与客观标准)和机构投资者的角度(与监管机构施加的风险约束)的优化问题进行了分析。本课题的另一个目标是,为发行人的违约(关联)提供保险的结构性信用产品,开发简约模型并分析其逆问题。具体而言,本课题的第一部分将解决最优停止理论中的开放性问题和金融数学中的自由边界问题。在第二部分的解决方案有许多实际的控制问题的直接应用,因为在许多应用中的观察的性质是离散的,异步的和非平稳的(即观察源的性质随时间变化)。在第三部分中,将考虑具有终生破产概率、占用时间或其他优化和/或风险约束的效用最大化问题。将讨论具有非线性期望的最优控制/停止问题。这些导致新的数学挑战,这将导致新的方法的发展。研究不确定投资环境和学习对最优投资策略的影响。 去年信用衍生品市场的巨大损失表明,信用衍生品的适当建模和定价是一个具有挑战性的开放性问题。在第四条路径中,研究人员将开发有效的模型,解决相应的逆问题并为场外期权定价。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erhan Bayraktar其他文献
On the market viability under proportional transaction costs
论交易成本比例下的市场生存能力
- DOI:
10.2139/ssrn.2388757 - 发表时间:
2013 - 期刊:
- 影响因子:1.6
- 作者:
Erhan Bayraktar;Xiang Yu - 通讯作者:
Xiang Yu
Remarks on the Perpetual American Put Option for Jump Diffusions
关于跳跃扩散的永久美式看跌期权的评论
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Erhan Bayraktar - 通讯作者:
Erhan Bayraktar
A stochastic approximation for fully nonlinear free boundary parabolic problems
完全非线性自由边界抛物线问题的随机近似
- DOI:
10.1002/num.21841 - 发表时间:
2011 - 期刊:
- 影响因子:3.9
- 作者:
Erhan Bayraktar;Arash Fahim - 通讯作者:
Arash Fahim
A Proof of the Smoothness of the Finite Time Horizon American Put Option for Jump Diffusions
有限时间范围美式看跌期权跳跃扩散的平滑性证明
- DOI:
10.2139/ssrn.976673 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Erhan Bayraktar - 通讯作者:
Erhan Bayraktar
Arbitrage theory in a market of stochastic dimension
随机维度市场中的套利理论
- DOI:
10.1111/mafi.12418 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Erhan Bayraktar;Donghan Kim;A. Tilva - 通讯作者:
A. Tilva
Erhan Bayraktar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erhan Bayraktar', 18)}}的其他基金
New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
- 批准号:
2106556 - 财政年份:2021
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant
New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
- 批准号:
1613170 - 财政年份:2016
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Mathematical Challenges in Distributed Quickest Detection
ATD:协作研究:分布式最快检测中的数学挑战
- 批准号:
1118673 - 财政年份:2011
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant
Workshop on Stochastic Analysis in Finance and Insurance
金融与保险随机分析研讨会
- 批准号:
1108593 - 财政年份:2011
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant
CAREER: Topics in Optimal Stopping and Control
职业:最佳停止和控制主题
- 批准号:
0955463 - 财政年份:2010
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant
Problems in Stochastic Control, Incomplete Markets, and Stochastic Limit Theorems
随机控制、不完全市场和随机极限定理中的问题
- 批准号:
0604491 - 财政年份:2006
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant
相似国自然基金
SS31肽通过AMPK/SIRT3通路调控氧化磷酸化在脓毒症心肌病中的作用及机制研究
- 批准号:JCZRLH202501261
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
沙眼衣原体II型分泌系统(T2SS)次要假菌毛的鉴定及其分子组装机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
NrtR通过调控T6SS参与溶藻弧菌竞争定
植的分子机制
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
SMARCB1乙酰化修饰调控驱动基因SS18-
SSX1增强子活性影响滑膜肉瘤侵袭转移
的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
电针通过 Nrxn3SS4+/Cbln2/GluD1 信号介导的
AMPAR 失活在脊髓损伤修复中的机制研究
- 批准号:Q24H270038
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
铜绿假单胞菌T6SS调控因子TsrF作用机制研究
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
鰤鱼诺卡氏菌 VII 型分泌系统(T7SS)在致病
过程中的作用及机制初探
- 批准号:TGN24C190012
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于ICCP-SS双重干预系统的海水海砂型钢混凝土梁柱节点抗震性能与设计
- 批准号:
- 批准年份:2024
- 资助金额:15.0 万元
- 项目类别:省市级项目
不锈钢SS310在布雷顿循环中的环境断裂敏感性和机理研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型sRNA-603介导T6SS关键组分ClpV调控变形假单胞菌毒力的分子机制
- 批准号:32373181
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
- 批准号:
MR/Z503873/1 - 财政年份:2024
- 资助金额:
$ 28.22万 - 项目类别:
Research Grant
Significance of anti-SS-A antibody in Stevens-Johnson syndrome and toxic epidermal necrolysis
抗SS-A抗体在Stevens-Johnson综合征和中毒性表皮坏死松解症中的意义
- 批准号:
23K15289 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SS-DSC: Stainless steel-concrete composite beams with stainless-steel demountable shear connectors for sustainable infrastructure
SS-DSC:带有不锈钢可拆卸剪力连接件的不锈钢混凝土组合梁,适用于可持续基础设施
- 批准号:
EP/Y020278/1 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Fellowship
Conference: Experimental Combustion: Past, Present, and Future -- International Combustion Institute Summer School (CI-SS) 2023
会议:实验燃烧:过去、现在和未来——国际燃烧学院暑期学校(CI-SS)2023
- 批准号:
2312846 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Standard Grant
NOIR-SSを用いた淡明細胞型腎癌におけるctDNAの定量と背景因子の解明
使用 NOIR-SS 对透明细胞肾癌的 ctDNA 进行定量并阐明背景因素
- 批准号:
23K08731 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Solid-State Battery Interface Design (SS-BID)
固态电池接口设计(SS-BID)
- 批准号:
DP230100429 - 财政年份:2023
- 资助金额:
$ 28.22万 - 项目类别:
Discovery Projects
Development of reflection-mode computed tomography using THz-SS-OCT
使用 THz-SS-OCT 开发反射模式计算机断层扫描
- 批准号:
22K04133 - 财政年份:2022
- 资助金额:
$ 28.22万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
West Africa Self-Sampling HPV Based Cervical Cancer Control Program (WA-SS-HCCP) for WLWHA: Barriers, challenges, and needs
西非 WLWHA 基于 HPV 的自我采样宫颈癌控制计划 (WA-SS-HCCP):障碍、挑战和需求
- 批准号:
10700092 - 财政年份:2022
- 资助金额:
$ 28.22万 - 项目类别:
Development of simultaneous N and SS removal system using DHS-USB and BFT
使用 DHS-USB 和 BFT 开发同时 N 和 SS 去除系统
- 批准号:
22K14936 - 财政年份:2022
- 资助金额:
$ 28.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
West Africa Self-Sampling HPV Based Cervical Cancer Control Program (WA-SS-HCCP) for WLWHA: Barriers, challenges, and needs
西非 WLWHA 基于 HPV 的自我采样宫颈癌控制计划 (WA-SS-HCCP):障碍、挑战和需求
- 批准号:
10541742 - 财政年份:2022
- 资助金额:
$ 28.22万 - 项目类别: