New Developments in Mean Field Game Theory and Applications

平均场博弈论及其应用的新进展

基本信息

项目摘要

Game theory is the study of mathematical models of strategic interaction among rational decision-makers. This project is about analyzing large population games, which will improve our understanding of complex systems in finance, macro-economics and engineering that are known to be extremely difficult to analyze. Here we will consider applications such as unemployment insurance and better understanding of systemic risk in financial markets. Results on these applications have a potential to help regulators with their decision making by using these tools to conduct risk-benefit analyses. The tools developed here will also be applicable to answering broader fundamental questions in mathematical finance. This project will provide support and opportunities for several graduate students and postdoctoral scholars.There have been some exciting developments in stochastic control inspired by finance and economics in the recent years: The analysis of Nash equilibriums of games with large number of players each having a very little influence on the overall system lead to the theory of mean field games. Applications now mandate finer understanding of finite state mean field games, since these are computationally more amenable, and heterogenous interactions between players using random graphs. The project has broad applications such as understanding macro-economic problems and systemic risk. The proposal will contribute to these developments by providing some new mathematical tools and exciting new results. In particular we propose to make advances in the following problems: Mean-field game analysis of Unemployment Insurance; Finite State Mean Field Games with Common Noise; Mean Field Interaction to analyze Systemic Risk in the long run; Modeling Heterogenous Interactions among particles/agents.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
博弈论是对理性决策者之间战略互动的数学模型的研究。这个项目是关于分析大型人口游戏,这将提高我们对金融,宏观经济和工程中复杂系统的理解,这些系统非常难以分析。在这里,我们将考虑失业保险等应用,并更好地了解金融市场的系统性风险。这些应用程序的结果有可能通过使用这些工具进行风险效益分析来帮助监管机构做出决策。这里开发的工具也将适用于回答数学金融中更广泛的基本问题。 该项目将为多名研究生和博士后学者提供支持和机会。近年来,在金融和经济学的启发下,随机控制领域出现了一些令人兴奋的发展:分析大量参与者对整个系统的影响很小的博弈的纳什均衡,导致了平均场博弈理论。现在的应用程序要求更好地理解有限状态平均场游戏,因为这些是计算更顺从,和异构的球员之间的相互作用,使用随机图。该项目具有广泛的应用,如理解宏观经济问题和系统性风险。该提案将通过提供一些新的数学工具和令人兴奋的新结果来促进这些发展。特别是在失业保险的平均场博弈分析、带共同噪声的有限状态平均场博弈、系统性风险长期分析的平均场相互作用、系统性风险长期分析的平均场相互模拟粒子间的异质相互作用/该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.

项目成果

期刊论文数量(22)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A smooth variational principle on Wasserstein space
Wasserstein空间上的平滑变分原理
Short Communication: Stability of Time-Inconsistent Stopping for One-Dimensional Diffusions
短通信:一维扩散的时间不一致停止的稳定性
Graphon particle system: Uniform-in-time concentration bounds
图形粒子系统:时间均匀的浓度范围
Supermartingale Brenier's Theorem with full-marginals constraint
具有全边际约束的 Supermartingale Brenier 定理
  • DOI:
    10.3934/fmf.2023010
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bayraktar, Erhan;Deng, Shuoqing;Norgilas, Dominykas
  • 通讯作者:
    Norgilas, Dominykas
Stability of Equilibria in Time-Inconsistent Stopping Problems
时间不一致停止问题中的平衡稳定性
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erhan Bayraktar其他文献

On the market viability under proportional transaction costs
论交易成本比例下的市场生存能力
  • DOI:
    10.2139/ssrn.2388757
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Erhan Bayraktar;Xiang Yu
  • 通讯作者:
    Xiang Yu
Remarks on the Perpetual American Put Option for Jump Diffusions
关于跳跃扩散的永久美式看跌期权的评论
A stochastic approximation for fully nonlinear free boundary parabolic problems
完全非线性自由边界抛物线问题的随机近似
A Proof of the Smoothness of the Finite Time Horizon American Put Option for Jump Diffusions
有限时间范围美式看跌期权跳跃扩散的平滑性证明
  • DOI:
    10.2139/ssrn.976673
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erhan Bayraktar
  • 通讯作者:
    Erhan Bayraktar
Arbitrage theory in a market of stochastic dimension
随机维度市场中的套利理论
  • DOI:
    10.1111/mafi.12418
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Erhan Bayraktar;Donghan Kim;A. Tilva
  • 通讯作者:
    A. Tilva

Erhan Bayraktar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erhan Bayraktar', 18)}}的其他基金

New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
  • 批准号:
    1613170
  • 财政年份:
    2016
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Mathematical Challenges in Distributed Quickest Detection
ATD:协作研究:分布式最快检测中的数学挑战
  • 批准号:
    1118673
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Workshop on Stochastic Analysis in Finance and Insurance
金融与保险随机分析研讨会
  • 批准号:
    1108593
  • 财政年份:
    2011
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
CAREER: Topics in Optimal Stopping and Control
职业:最佳停止和控制主题
  • 批准号:
    0955463
  • 财政年份:
    2010
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
AMC-SS: Problems in Mathematical Finance
AMC-SS:数学金融问题
  • 批准号:
    0906257
  • 财政年份:
    2009
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant
Problems in Stochastic Control, Incomplete Markets, and Stochastic Limit Theorems
随机控制、不完全市场和随机极限定理中的问题
  • 批准号:
    0604491
  • 财政年份:
    2006
  • 资助金额:
    $ 33万
  • 项目类别:
    Standard Grant

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 33万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
  • 批准号:
    23K03266
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments in quasi-Monte Carlo methods through applications of mathematical statistics
数理统计应用准蒙特卡罗方法的新发展
  • 批准号:
    23K03210
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
  • 批准号:
    23K01343
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
  • 批准号:
    23K12950
  • 财政年份:
    2023
  • 资助金额:
    $ 33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了