CAREER: Topics in Optimal Stopping and Control

职业:最佳停止和控制主题

基本信息

项目摘要

The first part of the project will consider optimal stopping problems in which the well-known results of the optimal stopping theory do not apply. An example is the American option pricing problem when there are weak arbitrage opportunities or a stock price bubble. The problems in this part are related to determining necessary and sufficient conditions for the uniqueness of solutions of the so-called Cauchy problems. Quantile hedging (hedging with high probability of success) problems, solutions of which are characterized by non-linear partial differential equations, will also be investigated in the above context. In the second part, I will develop a new theory for optimal stopping problems when the statistical expectation operator is replaced by alternative ways of measuring future rewards, for example by the so-called risk measures. These problems are related to stochastic differential games of control and stopping. Saddle points of such games will be determined. In some special cases, these are related free boundaries with quasi-linear (integro) partial differential equations. Regularity of the value function and the free boundary curve will be investigated. The relationship between the risk aversion and the shape of the free boundary will also be analyzed. In the third part, pathwise comparison and convex duality methods will be used to solve optimization problems with objectives of maximizing the probability of reaching certain goals. Utility maximization problems with risk constraints that will be considered in this part are quite relevant given the current economic environment in which large investors face regulatory risk constraints.The project will lead to several methodological/theoretical developments in the theory of optimal stopping and stochastic control. As a by-product, these developments will help us understand the existence, uniqueness, and regularity questions in linear/non-linear partial differential equations. Our results will resolve important pricing and hedging questions in Mathematical Finance. This project complements the recent developments in the theory of risk measures by addressing decision making problems using these measures as optimization criteria, which is an important step in managing financial risk.
该项目的第一部分将考虑最佳停止问题,其中著名的最佳停止理论的结果不适用。一个例子是当存在弱套利机会或股票价格泡沫时的美式期权定价问题。这一部分的问题是关于确定柯西问题解唯一的充分必要条件。分位数对冲(对冲成功的概率高)的问题,其解决方案的特点是非线性偏微分方程,也将在上述背景下进行研究。在第二部分,我将发展一个新的理论,当统计期望算子被替代的方法来衡量未来的回报,例如所谓的风险措施,最佳停止问题。 这些问题与控制和停止的随机微分对策有关。这类游戏的鞍点将被确定。 在某些特殊情况下,这些是与准线性(积分)偏微分方程相关的自由边界。 将研究值函数和自由边界曲线的正则性。并分析了风险规避与自由边界形状之间的关系。 在第三部分中,路径比较和凸对偶方法将被用来解决优化问题的目标最大化的概率达到一定的目标。考虑到当前的经济环境,大型投资者面临监管风险约束,本部分将考虑的风险约束下的效用最大化问题是非常相关的。该项目将导致最优停止理论和随机控制理论的一些方法/理论发展。作为副产品,这些发展将帮助我们理解线性/非线性偏微分方程的存在性,唯一性和正则性问题。我们的结果将解决数学金融中重要的定价和套期保值问题。该项目补充了风险度量理论的最新发展,通过使用这些度量作为优化标准来解决决策问题,这是管理金融风险的重要一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erhan Bayraktar其他文献

On the market viability under proportional transaction costs
论交易成本比例下的市场生存能力
  • DOI:
    10.2139/ssrn.2388757
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Erhan Bayraktar;Xiang Yu
  • 通讯作者:
    Xiang Yu
A Proof of the Smoothness of the Finite Time Horizon American Put Option for Jump Diffusions
有限时间范围美式看跌期权跳跃扩散的平滑性证明
  • DOI:
    10.2139/ssrn.976673
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erhan Bayraktar
  • 通讯作者:
    Erhan Bayraktar
A stochastic approximation for fully nonlinear free boundary parabolic problems
完全非线性自由边界抛物线问题的随机近似
Optimal investment with random endowments and transaction costs: duality theory and shadow prices
随机禀赋和交易成本下的最优投资:二元理论和影子价格
Arbitrage theory in a market of stochastic dimension
随机维度市场中的套利理论
  • DOI:
    10.1111/mafi.12418
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Erhan Bayraktar;Donghan Kim;A. Tilva
  • 通讯作者:
    A. Tilva

Erhan Bayraktar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erhan Bayraktar', 18)}}的其他基金

New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
  • 批准号:
    2106556
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
  • 批准号:
    1613170
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Mathematical Challenges in Distributed Quickest Detection
ATD:协作研究:分布式最快检测中的数学挑战
  • 批准号:
    1118673
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Workshop on Stochastic Analysis in Finance and Insurance
金融与保险随机分析研讨会
  • 批准号:
    1108593
  • 财政年份:
    2011
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
AMC-SS: Problems in Mathematical Finance
AMC-SS:数学金融问题
  • 批准号:
    0906257
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Problems in Stochastic Control, Incomplete Markets, and Stochastic Limit Theorems
随机控制、不完全市场和随机极限定理中的问题
  • 批准号:
    0604491
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Vortex Dynamics: Extreme Events, Optimal Closures and New Equilibrium Solutions
涡动力学主题:极端事件、最优闭合和新的平衡解
  • 批准号:
    RGPIN-2020-05710
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Topics in Optimal Transport and Nonlinear Partial Differential Equations
最优输运和非线性偏微分方程主题
  • 批准号:
    1515871
  • 财政年份:
    2015
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Optimal Control Problems with Time-Inconsistency and Related Topics
时间不一致的最优控制问题及相关主题
  • 批准号:
    1007514
  • 财政年份:
    2010
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Optimal Control for Forward-Backward Stochastic Differential Equations and Related Topics
前向-后向随机微分方程的最优控制及相关主题
  • 批准号:
    0604309
  • 财政年份:
    2006
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
International Conference on Variational Methods, Optimal Control, and Related Topics
变分方法、最优控制及相关主题国际会议
  • 批准号:
    9729837
  • 财政年份:
    1998
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research on Optimal Stochastic Control and Related Topics
数学科学:最优随机控制及相关主题的研究
  • 批准号:
    8701904
  • 财政年份:
    1987
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Topics in the Theory of Optimal Cooperation in Dynamic Games
动态博弈最优合作理论专题
  • 批准号:
    8709546
  • 财政年份:
    1987
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research on Optimal Stochastic Control and Related Topics in Applied Probability
数学科学:最优随机控制及应用概率相关主题的研究
  • 批准号:
    8121940
  • 财政年份:
    1982
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了