New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
基本信息
- 批准号:1613170
- 负责人:
- 金额:$ 33.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Roughly speaking, game theory aims to determine the best that two parties can do, separately or together, in contests in which each attempts to achieve an objective that may be at least partially contradictory to that of the other. Games (contests) involving more than two parties are more complicated, but the analysis of large-population games improves our understanding of complex systems in finance, economics, and engineering that are otherwise difficult to analyze. On the other hand, improved understanding of model uncertainty in finance leads to a better management of risk. This research project explores mathematical questions in these areas and aims to develop new mathematical tools, inspired by applications in mathematical finance. Graduate students and post-doctoral researchers are directly involved in the work. There have been some exciting developments in stochastic control inspired by finance and economics in recent years: Financial modeling with model uncertainty led to some new problems in optimal transport theory (namely the martingale optimal transport). The super-hedging problems led to the geometric dynamic programming principle, and the analysis of Nash equilibria of games with a large number of players each having a very little influence on the overall system led to the theory of mean field games. This research project aims to contribute to these developments by providing some new mathematical tools and studying some new questions motivated by applications. The project aims to further advance understanding of financial mathematics with model uncertainty, the geometric dynamic programming principle, randomization approaches to stochastic control, and mean field type control problems and mean field games.
粗略地说,博弈论的目的是确定在双方试图实现至少部分与另一方的目标相矛盾的目标的竞争中,双方单独或共同能做的最好的事情。涉及双方以上的博弈(竞赛)更加复杂,但对人口众多的博弈的分析提高了我们对金融、经济和工程中的复杂系统的理解,否则这些复杂系统很难分析。另一方面,更好地理解金融中的模型不确定性会带来更好的风险管理。这项研究项目探索这些领域的数学问题,旨在开发新的数学工具,灵感来自于在数学金融中的应用。研究生和博士后研究人员直接参与了这项工作。近年来,在金融学和经济学的启发下,随机控制有了一些令人振奋的发展:模型不确定的金融建模导致了最优运输理论中的一些新问题(即鞅最优运输)。超套期保值问题引出了几何动态规划原理,而对大量参与者博弈的纳什均衡的分析则导致了平均场博弈理论的产生。本研究项目旨在通过提供一些新的数学工具和研究一些由应用引发的新问题来促进这些发展。该项目旨在通过模型不确定性、几何动态规划原理、随机控制的随机化方法、平均场类型控制问题和平均场博弈来进一步加深对金融数学的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erhan Bayraktar其他文献
On the market viability under proportional transaction costs
论交易成本比例下的市场生存能力
- DOI:
10.2139/ssrn.2388757 - 发表时间:
2013 - 期刊:
- 影响因子:1.6
- 作者:
Erhan Bayraktar;Xiang Yu - 通讯作者:
Xiang Yu
Remarks on the Perpetual American Put Option for Jump Diffusions
关于跳跃扩散的永久美式看跌期权的评论
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Erhan Bayraktar - 通讯作者:
Erhan Bayraktar
A stochastic approximation for fully nonlinear free boundary parabolic problems
完全非线性自由边界抛物线问题的随机近似
- DOI:
10.1002/num.21841 - 发表时间:
2011 - 期刊:
- 影响因子:3.9
- 作者:
Erhan Bayraktar;Arash Fahim - 通讯作者:
Arash Fahim
A Proof of the Smoothness of the Finite Time Horizon American Put Option for Jump Diffusions
有限时间范围美式看跌期权跳跃扩散的平滑性证明
- DOI:
10.2139/ssrn.976673 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Erhan Bayraktar - 通讯作者:
Erhan Bayraktar
Arbitrage theory in a market of stochastic dimension
随机维度市场中的套利理论
- DOI:
10.1111/mafi.12418 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Erhan Bayraktar;Donghan Kim;A. Tilva - 通讯作者:
A. Tilva
Erhan Bayraktar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erhan Bayraktar', 18)}}的其他基金
New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
- 批准号:
2106556 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Mathematical Challenges in Distributed Quickest Detection
ATD:协作研究:分布式最快检测中的数学挑战
- 批准号:
1118673 - 财政年份:2011
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Workshop on Stochastic Analysis in Finance and Insurance
金融与保险随机分析研讨会
- 批准号:
1108593 - 财政年份:2011
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
CAREER: Topics in Optimal Stopping and Control
职业:最佳停止和控制主题
- 批准号:
0955463 - 财政年份:2010
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
AMC-SS: Problems in Mathematical Finance
AMC-SS:数学金融问题
- 批准号:
0906257 - 财政年份:2009
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Problems in Stochastic Control, Incomplete Markets, and Stochastic Limit Theorems
随机控制、不完全市场和随机极限定理中的问题
- 批准号:
0604491 - 财政年份:2006
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
相似海外基金
Several Problems of Stochastic Optimal Controls in Infinite Time Horizon
无限时间范围内随机最优控制的几个问题
- 批准号:
2305475 - 财政年份:2023
- 资助金额:
$ 33.92万 - 项目类别:
Standard Grant
Stochastic optimization of network design and transportation problems
网络设计和运输问题的随机优化
- 批准号:
RGPIN-2018-05390 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Discovery Grants Program - Individual
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
- 批准号:
RGPIN-2020-04338 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Discovery Grants Program - Individual
Research on Applications of Advanced Stochastic Control and Game Theory to Trade Execution Problems in Financial Markets
高级随机控制和博弈论在金融市场交易执行问题中的应用研究
- 批准号:
22K01573 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stochastic Volterra integral equations and related control problems
随机 Volterra 积分方程及相关控制问题
- 批准号:
22K13958 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Forecasting and Stochastic Optimization: Applications to Capacity, Inventory and Revenue Management Problems.
预测和随机优化:在容量、库存和收入管理问题中的应用。
- 批准号:
RGPIN-2019-04972 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Discovery Grants Program - Individual
Stochastic Interacting Population Dynamics and Related Problems
随机相互作用的种群动态及相关问题
- 批准号:
RGPIN-2021-04100 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Discovery Grants Program - Individual
Fluid Models for Stochastic Dynamic Transportation Problems
随机动态运输问题的流体模型
- 批准号:
568131-2022 - 财政年份:2022
- 资助金额:
$ 33.92万 - 项目类别:
Postdoctoral Fellowships
Stochastic optimization of network design and transportation problems
网络设计和运输问题的随机优化
- 批准号:
RGPIN-2018-05390 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
Discovery Grants Program - Individual
Studies on Multipurpose Distributed Constraint Optimization Problems under Dynamic Stochastic Environments with Disaster Relief Simulations
动态随机环境下多用途分布式约束优化问题与救灾模拟研究
- 批准号:
21K12039 - 财政年份:2021
- 资助金额:
$ 33.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)