Problems in Stochastic Control, Incomplete Markets, and Stochastic Limit Theorems

随机控制、不完全市场和随机极限定理中的问题

基本信息

项目摘要

The proposed project consists of four parts: (1) Solving the optimal stopping problems associated with several quickest detection problems for processes that jump. The goal is to provide novel optimization techniques for such processes and study properties of the corresponding variational inequalities. (2) Developing stochastic control techniques to study the problem of how an individual (retiree) should invest her wealth in a risky financial market in order to minimize the probability that she outlives her wealth, minimizes her life-time shortfall. In this case, the aim is to develop the earlier results of L-infinity control and to analyze the associated variational equalities for more realistic market models. (3) Developing new pricing principles for incomplete markets, with the objective of providing new insights into pricing and hedging derivative securities in incomplete markets. This part also includes developing solutions of impulse and singular control problems for any one-dimensional diffusion (with decision making delay). (4) Developing stochastic limit theorems for processes with semi-Markov switching to elucidate the impact of common characteristics of the investors on the aggregate quantities like the market prices.Optimal stopping problems have applications in the areas of seismology, machine monitoring, finance, insurance, health surveillance among others. Improved stochastic control techniques may inform the public, financial planners and legislators about the risk of ruin in retirement. This work will benefit individuals' decision making on important financial matters they face during their lives: How much to invest in mutual funds; how much insurance one should buy; whether it is a good time to borrow to invest in the stock market and how much one should borrow; when it is best to declare bankruptcy; when one should retire, etc. The development of new pricing principles provides better pricing mechanisms for derivative products in the markets, which will benefit the financial institutions which are at the center of the economy. The results in the final section of this part will help the management make better decisions for the welfare of their companies which will benefit the nation since available resources will be used more efficiently. The final objective of the project will obtain insights into the market dynamics by understanding the price formation from typical behavioral qualities of investors. This is important in creating good financial models that benefit economic forecast, investment and policy decisions.
提出的方案包括四个部分:(1)解决与跳跃过程的几个最快检测问题相关的最优停止问题。目标是为这些过程提供新的优化技术,并研究相应的变分不等式的性质。(2)发展随机控制技术来研究一个人(退休人员)应该如何在一个有风险的金融市场中投资她的财富,以最小化她比她的财富更长寿的概率,最小化她的生命短缺。在这种情况下,目的是发展l -∞控制的早期结果,并为更现实的市场模型分析相关的变分等式。(3)为不完全市场制定新的定价原则,目的是为不完全市场中衍生品证券的定价和对冲提供新的见解。这部分还包括对任意一维扩散(带决策延迟)的脉冲控制和奇异控制问题的求解。(4)建立了半马尔可夫转换过程的随机极限定理,阐明了投资者的共同特征对市场价格等总量的影响。最优停止问题在地震学、机器监测、金融、保险、健康监测等领域都有应用。改进后的随机控制技术可以让公众、财务规划师和立法者了解退休后破产的风险。这项工作将有利于个人在他们一生中面临的重要财务问题上做出决策:在共同基金上投资多少;应该买多少保险;现在是不是借钱投资股市的好时机,应该借多少钱;什么时候最好宣布破产;何时退休等。新的定价原则的发展为市场上的衍生产品提供了更好的定价机制,这将使处于经济中心的金融机构受益。本部分最后一部分的结果将有助于管理层为公司的福利做出更好的决策,这将有利于国家,因为可用的资源将被更有效地利用。该项目的最终目标是通过了解投资者典型行为品质的价格形成来洞察市场动态。这对于创建有利于经济预测、投资和政策决策的良好金融模型非常重要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Erhan Bayraktar其他文献

On the market viability under proportional transaction costs
论交易成本比例下的市场生存能力
  • DOI:
    10.2139/ssrn.2388757
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Erhan Bayraktar;Xiang Yu
  • 通讯作者:
    Xiang Yu
A Proof of the Smoothness of the Finite Time Horizon American Put Option for Jump Diffusions
有限时间范围美式看跌期权跳跃扩散的平滑性证明
  • DOI:
    10.2139/ssrn.976673
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erhan Bayraktar
  • 通讯作者:
    Erhan Bayraktar
A stochastic approximation for fully nonlinear free boundary parabolic problems
完全非线性自由边界抛物线问题的随机近似
Optimal investment with random endowments and transaction costs: duality theory and shadow prices
随机禀赋和交易成本下的最优投资:二元理论和影子价格
Arbitrage theory in a market of stochastic dimension
随机维度市场中的套利理论
  • DOI:
    10.1111/mafi.12418
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Erhan Bayraktar;Donghan Kim;A. Tilva
  • 通讯作者:
    A. Tilva

Erhan Bayraktar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Erhan Bayraktar', 18)}}的其他基金

New Developments in Mean Field Game Theory and Applications
平均场博弈论及其应用的新进展
  • 批准号:
    2106556
  • 财政年份:
    2021
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
  • 批准号:
    1613170
  • 财政年份:
    2016
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Mathematical Challenges in Distributed Quickest Detection
ATD:协作研究:分布式最快检测中的数学挑战
  • 批准号:
    1118673
  • 财政年份:
    2011
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
Workshop on Stochastic Analysis in Finance and Insurance
金融与保险随机分析研讨会
  • 批准号:
    1108593
  • 财政年份:
    2011
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
CAREER: Topics in Optimal Stopping and Control
职业:最佳停止和控制主题
  • 批准号:
    0955463
  • 财政年份:
    2010
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
AMC-SS: Problems in Mathematical Finance
AMC-SS:数学金融问题
  • 批准号:
    0906257
  • 财政年份:
    2009
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
基于梯度增强Stochastic Co-Kriging的CFD非嵌入式不确定性量化方法研究
  • 批准号:
    11902320
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2022
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Discovery Grants Program - Individual
Research on Applications of Advanced Stochastic Control and Game Theory to Trade Execution Problems in Financial Markets
高级随机控制和博弈论在金融市场交易执行问题中的应用研究
  • 批准号:
    22K01573
  • 财政年份:
    2022
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Stochastic Volterra integral equations and related control problems
随机 Volterra 积分方程及相关控制问题
  • 批准号:
    22K13958
  • 财政年份:
    2022
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Time-inconsistent stochastic control problems and related topics
时间不一致随机控制问题及相关主题
  • 批准号:
    21J00460
  • 财政年份:
    2021
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2021
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Discovery Grants Program - Individual
Stochastic optimal control problems in risk management
风险管理中的随机最优控制问题
  • 批准号:
    RGPIN-2020-04338
  • 财政年份:
    2020
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Discovery Grants Program - Individual
Time-Consistency Theory for Time-Inconsistent Stochastic Optimal Control Problems
时间不一致随机最优控制问题的时间一致性理论
  • 批准号:
    1812921
  • 财政年份:
    2018
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
Identification problems in stochastic control theory
随机控制理论中的辨识问题
  • 批准号:
    17K05359
  • 财政年份:
    2017
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A Stochastic Approach to Environmental Investment Problems with the Planar Impulse Control(Fostering Joint International Research)
平面脉冲控制环境投资问题的随机方法(促进国际联合研究)
  • 批准号:
    16KK0046
  • 财政年份:
    2017
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
New Problems in Stochastic Control Motivated by Mathematical Finance
数学金融引发的随机控制新问题
  • 批准号:
    1613170
  • 财政年份:
    2016
  • 资助金额:
    $ 8.87万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了