Bridging the Miscibility Gap in InGaN Alloys

缩小 InGaN 合金的混溶性差距

基本信息

  • 批准号:
    0906879
  • 负责人:
  • 金额:
    $ 47.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)." Technical. This project addresses the epitaxial growth of high crystalline quality InGaN across the complete composition range. The aim is to gain greater understanding of the properties of the miscibility gap and to explore methods that can consistently provide single phase InGaN films. Theoretical studies suggest that phase separation in layers having the interface oriented parallel to the c-axis (such as a- or m-plane InGaN) is dramatically suppressed. Thus, the approach is to develop MOCVD processes for the growth of InGaN epilayers on a-plane through different epilayer templates (AlN, GaN, and InN). Studies to understand fundamental effects of growth orientation and strain on the miscibility gap in InGaN are expected to lead to a new approach for achieving single phase device quality InGaN epilayers. These films will then allow for studies of fundamental optical and transport properties of InGaN in composition ranges which were previously inaccessible. Detailed studies concerning the optical and transport properties of InxGa1-xN in the miscibility gap region (0.45 x 0.75) have not been possible because these InxGa1-xN films generally have been of very low crystalline quality and exhibit weak or negligible photoluminescence. It is anticipated that many of the important physical properties (structural, optical, and electrical) of InxGa1-xN in the miscibility gap region will be characterized through these studies. Non-Technical. The project addresses fundamental research issues in a topical area of electronic/photonic materials science having technological relevance. The realization of device quality InGaN epilayers over a more complete alloy range would yield significant benefits for many III-nitride based optoelectronic devices. The bandgap of InGaN expands from about 0.7 eV to 3.4 eV, which covers the entire solar spectrum. In principle, a multijunction solar cell or photoelectrochemical cell based on multi-layers of InGaN with different In-contents is highly efficient at capturing different wavelengths of the sunlight passing through the cell. InGaN alloys could also be potentially important thermoelectric (TE) materials and may be an attractive alternative to other materials for the development of TE generators that are able to directly convert heat to electricity in new generation automobiles, radioisotope TE generators in spacecraft or cooling modules for enhanced efficiency and lifetime of micro/nano-scale sensor networks. Attainment of high quality InGaN in the previously predicted miscibility gap region would also significantly benefit the development of high efficiency LEDs with wavelengths longer than 550 nm. The successful attainment of highly efficient green/yellow InGaN LEDs would then enable the technology for white LEDs through the R-G-B three color chip integration approach providing highly efficient light sources for general illumination. The bandgap of In-rich InGaN could also be engineered to match the fiber optic communication wavelength around 1.5 um. Postdoctoral and graduate students will be actively involved in a research program that is highly interdisciplinary in nature including state-of-the-art epitaxial research of photonic materials and structures to advanced materials characterization and micro/nano-scale prototype photonic/optoelectronic device research. Undergraduates will also participate in this research using Whitacre Endowment funds. Plans for education and outreach include the development of hands-on activities to be presented to teams of high school teachers and students on 'Nanophotonics' in conjunction with activities conducted by the Center of Engineering Outreach at TTU.
“该裁决是根据2009年《美国复苏与再投资法》(公法111-5)资助的。”技术的。该项目介绍了整个组成范围内高晶质量INGAN的外延生长。目的是对可交解性差距的性质有更深入的了解,并探索可以始终提供单相膜的方法。理论研究表明,具有平行于C轴(例如A-或M-Plane Ingan)的界面方向的层分离。因此,这种方法是开发通过不同的表层模板(ALN,GAN和INN)在A平面上生长的MOCVD过程。预计了解INGAN的可交解性差距的生长取向和压力的基本影响的研究预计将为实现单相设备质量INGAN EPILAYERS提供新的方法。然后,这些薄膜将允许研究Ingan的基本光学和运输特性,这些构成范围以前无法访问。关于这些差距区域中INXGA1-XN的光学和传输特性的详细研究是不可能的(0.45 x 0.75),因为这些INXGA1-XN膜通常具有非常低的结晶质量,并且表现出弱或可忽略不计的光发光。可以预见,通过这些研究,将表征许多在混乱性差距区域中INXGA1-XN的重要物理特性(结构,光学和电气)。非技术。该项目解决了具有技术相关性的电子/光子材料科学主题领域的基本研究问题。在更完整的合金范围内实现设备质量的Ingan Epolayers将为许多基于III-硝酸盐的光电设备带来重大好处。 Ingan的带隙从约0.7 eV扩展到3.4 eV,覆盖了整个太阳谱。原则上,基于INGAN的多层具有不同内部体内的多仪太阳能电池或光电化学电池,在捕获穿过电池的阳光的不同波长方面非常有效。 INGAN合金也可能是重要的热电(TE)材料,并且可能是其他材料的有吸引力的替代品,用于开发TE发电机,这些发电机能够直接将热量转换为新一代汽车中的电力,飞机上的放射性分测机TE发电机或冷却模块,以增强微/Nano/Nano-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale-Scale Sensor。在先前预测的差距区域中,获得高质量的INGAN也将显着有益于波长超过550 nm的高效率LED的发展。然后,成功实现了高效的绿色/黄色INGAN LED,将通过R-G-B三色芯片整合方法为白色LED提供技术,从而为一般照明提供了高效的光源。丰富的Ingan的带隙也可以进行设计,以匹配1.5 um左右的光纤通信波长。博士后和研究生将积极参与一项研究计划,该计划在本质上是高度跨学科的研究,包括对光子材料和结构的最新外延研究,用于先进的材料表征以及微/纳米级的原型光子/光子/光电/光电器设备研究。本科生还将使用白色捐赠基金参加这项研究。教育和宣传计划包括开展动手活动,将与TTU工程外展活动中心进行的活动一起向高中教师和学生的“纳米素养”团队提出。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jingyu Lin其他文献

A new sensor for simultaneous measurement of strain and temperature
一种同时测量应变和温度的新型传感器
  • DOI:
    10.1109/lpt.2020.3019847
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Cuiting Sun;Chupeng Lu;Xiren Jin;Xudong Chen;Qi Yan;Jingyu Lin;Xian Xu;Mingyang Lv;Shuo Zhang;Yiwei Ma;Yinghua Zhang;Tao Geng;Weimin Sun;Zhongquan Qu;Libo Yuan
  • 通讯作者:
    Libo Yuan
Persistent photoconductivity in II‐VI and III‐V semiconductor alloys and a novel infrared detector
II-VI 和 III-V 半导体合金的持久光电导性和新型红外探测器
  • DOI:
    10.1063/1.348889
  • 发表时间:
    1991
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hongxing Jiang;Gregory K. Brown;Jingyu Lin
  • 通讯作者:
    Jingyu Lin
Optical properties of GaN/AlN multiple quantum wells
GaN/AlN多量子阱的光学特性
  • DOI:
    10.1016/j.ssc.2004.05.036
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Tai;Y. Sheu;Yanguang Chen;Jingyu Lin;Hongxing Jiang
  • 通讯作者:
    Hongxing Jiang
Enhancing erbium emission by strain engineering in GaN heteroepitaxial layers
通过 GaN 异质外延层中的应变工程增强铒发射
  • DOI:
    10.1063/1.3295705
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4
  • 作者:
    I. Feng;J. Li;A. Sedhain;Jingyu Lin;Hongxing Jiang;J. Zavada
  • 通讯作者:
    J. Zavada
Probing Boron Vacancy Complexes in h-BN Semi-Bulk Crystals Synthesized by Hydride Vapor Phase Epitaxy
氢化物气相外延合成的 h-BN 半块体晶体中硼空位配合物的探测
  • DOI:
    10.3390/cryst13091319
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Z. Alemoush;A. Tingsuwatit;Jing Li;Jingyu Lin;Hongxing Jiang
  • 通讯作者:
    Hongxing Jiang

Jingyu Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jingyu Lin', 18)}}的其他基金

New Design and Manufacture Technologies for High-Performance Millimetre-Wave and Terahertz Waveguide Devices for Space and Terrestrial Communications
用于空间和地面通信的高性能毫米波和太赫兹波导器件的新设计和制造技术
  • 批准号:
    EP/Y016580/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Fellowship
Exploiting Novel Device Structures for Deep Ultraviolet Emitters
利用深紫外发射器的新型器件结构
  • 批准号:
    1402886
  • 财政年份:
    2014
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Layer-Structured Semiconductor Alloys: Growth, Characterization, and Applications
层状结构半导体合金:生长、表征和应用
  • 批准号:
    1206652
  • 财政年份:
    2012
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
III-Nitride Deep Ultraviolet Photonic Materials and Structures - Growth, Optical Studies and Applications
III 氮化物深紫外光子材料和结构 - 生长、光学研究和应用
  • 批准号:
    0504601
  • 财政年份:
    2005
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Continuing Grant
Nitride Quantum Wells and Photonic Structures - Growth, Optical Studies, and Applications
氮化物量子阱和光子结构 - 生长、光学研究和应用
  • 批准号:
    0203373
  • 财政年份:
    2002
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Continuing Grant
Mechanisms of Optical Transitions in AlGaN Alloys and GaN/Al GaN Quantum Wells
AlGaN 合金和 GaN/Al GaN 量子阱中的光学跃迁机制
  • 批准号:
    9902431
  • 财政年份:
    1999
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Continuing Grant
Dynamics of Fundamental Optical Transitions in Gallium Nitride and Aluminum Gallium Nitride
氮化镓和氮化铝镓中基本光学跃迁的动力学
  • 批准号:
    9528226
  • 财政年份:
    1996
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Continuing Grant
Nature of Quantum Localization Probed by Exciton Dynamics in II-VI Semiconductor Alloys
II-VI 半导体合金中激子动力学探测量子局域化的本质
  • 批准号:
    9408816
  • 财政年份:
    1994
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant

相似国自然基金

基于混杂系统理论的异质多智能体系统可控性研究
  • 批准号:
    62303162
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
紫杉二烯-5α-羟化酶催化混杂性机制解析与理性设计
  • 批准号:
    32371499
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
矩阵耦合网络上混杂多智能体系统的一致性控制研究
  • 批准号:
    62263024
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于流动性-混杂性视角的江汉平原乡村社区空间重构
  • 批准号:
    42271227
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
新型卤醇脱卤酶催化混杂性形成机制及其催化连续反应性能调控
  • 批准号:
    22178180
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目

相似海外基金

Miscibility-immiscibility conundrum in air-liquid-vapor flow modeling: Bridging the gap by using the phase-field method
空气-液体-蒸汽流建模中的混溶性与不混溶性难题:使用相场方法弥合差距
  • 批准号:
    1805817
  • 财政年份:
    2018
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Standard Grant
Miscibility Gap between Antiferromagnetic and Paramagnetic Phases in the NiMn-NiZn Pseudo-Binary System
NiMn-NiZn 伪二元体系中反铁磁相和顺磁相之间的混溶间隙
  • 批准号:
    25630261
  • 财政年份:
    2013
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
NANOSCALE CONTROL OF MOLECULAR DISPERSION-PHASE SEPARATION FOR TWO-DIMENSIONAL AGGREGATING SYSTEM
二维聚集体系分子分散相分离的纳米级控制
  • 批准号:
    09450039
  • 财政年份:
    1997
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure and Dynamics on Metal-Nonmetal transition in Ionic Liquids
离子液体中金属-非金属转变的结构和动力学
  • 批准号:
    04640348
  • 财政年份:
    1992
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Critical electronic phenomena in liquid alloys with miscibility gap
具有混溶间隙的液态合金中的关键电子现象
  • 批准号:
    04640427
  • 财政年份:
    1992
  • 资助金额:
    $ 47.52万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了