Data Depth for Nonparametric Multivariate Analysis: Goodness-of-Fit Tests Based on Spacings, Classification, and A Coherent Framework for Data Depth
非参数多元分析的数据深度:基于间距、分类和数据深度的一致框架的拟合优度检验
基本信息
- 批准号:0907655
- 负责人:
- 金额:$ 11.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 Public Law 111-5). Advanced computing and data acquisition technologies have made possible the gathering of large multivariate data sets in many fields. Efficient multivariate statistical analysis tools for such data sets are highly sought after. Among the existing multivariate analysis approaches, the one based on the data depth has received most attention recently, due to its highly desirable nonparametric nature. Expanding further along the theme of data depth, this proposal outlines three new research projects in nonparametric multivariate inference, namely: (1) to develop a new class of multivariate goodness-of-fit tests based on multivariate spacings; (2) to introduce a novel nonparametric classification algorithm using the so-called DD-plots; (3) to extend the general framework for all notions of data depth, and to develop new data depths which are suitable for analyzing data drawn from non-continuous distributions. The proposal addresses important problems in theoretical multivariate statistics, which have a wide range of applications in practice. All three research directions are highly competitive, since any new development in these directions will significantly advance multivariate statistical methodology as a whole. The proposed research also aims to bring forth many efficient statistical inference procedures with immediate applicability in many domains such as medicine, biology, psychology, just to name a few. Motivating examples in ecology and environmental sciences are elaborated in the proposal. They will also be illustrated fully in future publications, which should help foster more interdisciplinary interaction between statistics and other fields.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。先进的计算和数据采集技术使得在许多领域收集大型多元数据集成为可能。高效的多元统计分析工具,这样的数据集是非常抢手的。在现有的多变量分析方法中,基于数据深度的方法由于其高度理想的非参数性质而受到了广泛关注。本文沿着数据深度这一主题进一步展开,提出了非参数多元推理的三个新的研究项目:(1)发展一类新的基于多元间距的多元拟合优度检验,(2)引入一种新的基于DD图的非参数分类算法,(3)提出一种新的基于DD图的非参数分类算法,(4)提出一种新的基于DD图的非参数分类算法。(3)扩展数据深度的所有概念的一般框架,并开发适合于分析从非连续分布中提取的数据的新数据深度。该提案解决了理论多元统计中的重要问题,这些问题在实践中有广泛的应用。所有这三个研究方向都具有很强的竞争力,因为在这些方向上的任何新发展都将显着推进多元统计方法作为一个整体。拟议的研究还旨在提出许多有效的统计推断程序,可立即应用于许多领域,如医学,生物学,心理学,仅举几例。在生态学和环境科学的激励例子中阐述的建议。今后的出版物也将充分说明这些问题,这应有助于促进统计与其他领域之间更多的学科间互动。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jun Li其他文献
Upregulation of flotillin-1 promotes invasion and metastasis by activating TGF-β signaling in nasopharyngeal carcinoma
ïotillin-1 的上调通过激活 TGF-β 信号传导促进鼻咽癌的侵袭和转移
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Sumei Cao;Yanmei Cui;Huiming Xiao;Miaoqing Mai;Chanjuan Wang;Shanghang Xie;Jing Yang;Shu Wu;Jun Li;Libing Song;Xiang Guo;Chuyong Lin - 通讯作者:
Chuyong Lin
The utility of angiographic CT in the diagnosis and treatment of neurovascular pathologies in the vicinity of cranial base
血管造影CT在颅底附近神经血管病变诊治中的应用
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:2.8
- 作者:
Jun Li;Feng Wan;Gang Chen;Lianting Ma;Geng Zhang;Guo;J. Gong - 通讯作者:
J. Gong
d-Wave superconductivity via buckling-like phonon mode
通过类屈曲声子模式实现 d 波超导
- DOI:
10.1016/j.ssc.2004.10.030 - 发表时间:
2005 - 期刊:
- 影响因子:2.1
- 作者:
D. Tang;Jun Li;C. Gong - 通讯作者:
C. Gong
VLSI design of low-cost and high-precision fixed-point reconfigurable FFT processors
低成本高精度定点可重构FFT处理器的VLSI设计
- DOI:
10.1049/iet-cdt.2017.0060 - 发表时间:
2018-02 - 期刊:
- 影响因子:1.2
- 作者:
Hao Xiao;Xiang Yin;Ning Wu;Xin Chen;Jun Li;Xiaoxing Chen - 通讯作者:
Xiaoxing Chen
Out-of-plane dimeric MnIII quadridentate Schiff-base complexes: Synthesis, structure and magnetic properties
面外二聚 MnIII 四齿席夫碱配合物:合成、结构和磁性
- DOI:
10.1016/j.ica.2009.03.048 - 发表时间:
2009-08 - 期刊:
- 影响因子:0
- 作者:
Ya-Fan Zhao;Chao Wang;Qing-Lun Wang;Yu-Hua Feng;Daizheng Liao;Jun Li;Shi-Ping Yan - 通讯作者:
Shi-Ping Yan
Jun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jun Li', 18)}}的其他基金
Integrated Multiscale Computational and Experimental Investigations on Fracture of Additively Manufactured Polymer Composites
增材制造聚合物复合材料断裂的综合多尺度计算和实验研究
- 批准号:
2309845 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Discovery Projects - Grant ID: DP210101100
发现项目 - 拨款 ID:DP210101100
- 批准号:
ARC : DP210101100 - 财政年份:2021
- 资助金额:
$ 11.97万 - 项目类别:
Discovery Projects
Explore Electrocatalysis to Improve the Cathode Performance in Li-S Batteries
探索电催化提高锂硫电池正极性能
- 批准号:
2054754 - 财政年份:2021
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
- 批准号:
2101388 - 财政年份:2020
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Offline and Online Change-point Analysis for Large-scale Time Series Data
大规模时间序列数据的离线和在线变点分析
- 批准号:
1916239 - 财政年份:2019
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
CIF: Small: Coding Techniques for Distributed Machine Learning
CIF:小型:分布式机器学习的编码技术
- 批准号:
1910447 - 财政年份:2019
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
A Novel Fuel Cell Catalyst and Support Architecture Based on Edge-site Pyridinic Nitrogen-Doping on Vertically Aligned Conical Carbon Nanofibers
基于垂直排列锥形碳纳米纤维边缘位吡啶氮掺杂的新型燃料电池催化剂和支撑结构
- 批准号:
1703263 - 财政年份:2017
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
SUSCHEM: Exploring Specific Heating in Microwave-assisted Synthesis of Hierarchical Hybrid Nanomaterials for Future Sustainable Batteries
SUSCHEM:探索微波辅助合成未来可持续电池的分层混合纳米材料中的比热
- 批准号:
1707585 - 财政年份:2017
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
CAREER: Genetic and Molecular Mechanisms of Parasite Infection in Insects
职业:昆虫寄生虫感染的遗传和分子机制
- 批准号:
1742644 - 财政年份:2017
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
TWC: Medium: Collaborative: Online Social Network Fraud and Attack Research and Identification
TWC:媒介:协作:在线社交网络欺诈和攻击研究与识别
- 批准号:
1564348 - 财政年份:2016
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
相似海外基金
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
Neural mechanism of the luminance contrast effect on perceived depth from disparity
亮度对比度对视差感知深度影响的神经机制
- 批准号:
24K16880 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
In-depth Investigation of Lithium Dendrite Formation Processes
深入研究锂枝晶形成过程
- 批准号:
DE240101090 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Discovery Early Career Researcher Award
CAREER: Heat Penetration Depth and Direction Control with Closed-Loop Device for Precision Ablation
职业:利用闭环装置控制热穿透深度和方向,实现精确烧蚀
- 批准号:
2338890 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Continuing Grant
EAGER: A Novel Hybrid Light-Field and High-Energy Pulse Color and Depth Encoded Illumination PIV Technique for Unsteady Flow Analyses
EAGER:一种用于非稳态流分析的新型混合光场和高能脉冲颜色和深度编码照明 PIV 技术
- 批准号:
2418485 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
実レンズの非理想性補正に基づく高精度Depth from Defocus法の実現
基于真实镜头非理想校正的散焦法高精度景深实现
- 批准号:
24K15008 - 财政年份:2024
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the Structural Reinforcement to Optimize the Axial Tension of Rigid Riser in Water Depth Below 4,000m
4000m以下水深刚性立管轴拉力优化的结构加固研究
- 批准号:
23K04265 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
- 批准号:
2219956 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Standard Grant
In depth characterisation of the gamma delta T cell immune synapse
γδT 细胞免疫突触的深入表征
- 批准号:
DP230102073 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别:
Discovery Projects
Emergent Behavior in a Dish: Discovery of Bi-directional Spiraling as a Population Phenomenon in C. elegans Enables In-Depth Dissection of Mechanisms Underlying Group Behaviors
培养皿中的突现行为:发现秀丽隐杆线虫中的双向螺旋种群现象,有助于深入剖析群体行为背后的机制
- 批准号:
10724212 - 财政年份:2023
- 资助金额:
$ 11.97万 - 项目类别: