Geometrically Based Kinetic Approach to Multi-scale Problems
多尺度问题的基于几何的动力学方法
基本信息
- 批准号:0907963
- 负责人:
- 金额:$ 17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project develops analytical and numerical tools to study multi-scale wave dynamics in two application areas: semi-classical dynamics in Schrodinger equations, and kinetic descriptions for polymer orientation dynamics. For high frequency wave propagation problems, the project will continue to develop effective geometrical partial-differential-equation models to capture field statistics. We will further develop mathematical tools to evaluate underlying physical observables and to reconstruct the original wave field globally. Within this framework, semi-classical convergence beyond caustics is to be established. For polymer orientation dynamics, we will study the isotropic-nematic phase transition in presence of inertial forces, as well as derivation and validation of kinetic models for polymers on manifolds. The research employs novel approaches, such as geometric closure for kinetic transport and kinetic models on tangent bundles, combined with traditional methods, such as asymptotic and direct numerical methods.Many physical problems have multiple temporal and spatial scales that pose tremendous difficulties for mathematical analysis and numerical simulation. This research project will have profound impact on fundamental understanding of high frequency waves and polymer orientation dynamics. One of the objectives is to accurately recover high frequency wave fields around caustics, which is important in many applications such as in seismic imaging. Another objective is to investigate the phase transitions in kinetic models of polymers on manifolds, which can lead to a better understanding of phase segregation in polymeric fluids. The theory under development will be applied to and driven by identified practical applications, and the results of the project will not only increase technical knowledge but will also produce a broader view of the subject. A third objective of the project is to provide training for graduate and undergraduate students involved in carrying out this research.
该研究项目开发了分析和数值工具,以研究两个应用领域的多尺度波动动力学:薛定谔方程中的半经典动力学和聚合物取向动力学的动力学描述。 对于高频波传播问题,该项目将继续开发有效的几何偏微分方程模型,以获取现场统计数据。 我们将进一步开发数学工具来评估潜在的物理观测值,并在全球范围内重建原始波场。 在这个框架内,超越焦散的半经典收敛将被建立。 对于聚合物取向动力学,我们将研究在惯性力存在下的各向同性相变,以及流形上聚合物动力学模型的推导和验证。 由于许多物理问题具有多个时空尺度,给数学分析和数值模拟带来了巨大的困难,因此,本文采用了新的方法,如动力学输运的几何封闭和切丛动力学模型,并结合了传统的方法,如渐近和直接数值方法。 该研究项目将对高频波和聚合物取向动力学的基本理解产生深远的影响。 目标之一是准确地恢复焦散线周围的高频波场,这在诸如地震成像的许多应用中是重要的。 另一个目标是研究聚合物在流形上的动力学模型中的相变,这可以更好地理解聚合物流体中的相分离。 正在开发的理论将被应用到确定的实际应用中并由其驱动,该项目的结果不仅将增加技术知识,而且还将产生对该主题的更广泛的看法。 该项目的第三个目标是为参与开展这项研究的研究生和本科生提供培训。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hailiang Liu其他文献
Asymptotic stability of relaxation shock profiles for hyperbolic conservation laws
- DOI:
10.1016/s0022-0396(03)00124-4 - 发表时间:
2003-08 - 期刊:
- 影响因子:2.4
- 作者:
Hailiang Liu - 通讯作者:
Hailiang Liu
Asymptotic stability of shock profiles for nonconvex convection-diffusion equation☆
- DOI:
10.1016/s0893-9659(96)00124-3 - 发表时间:
1997 - 期刊:
- 影响因子:3.7
- 作者:
Hailiang Liu - 通讯作者:
Hailiang Liu
Sobolev and Max Norm Error Estimates for Gaussian Beam Superpositions
高斯光束叠加的 Sobolev 和最大范数误差估计
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Hailiang Liu;O. Runborg;N. Tanushev - 通讯作者:
N. Tanushev
A finite volume method for nonlocal competition-mutation equations with a gradient flow structure
- DOI:
http://dx.doi.org/10.1051/m2an/2016058 - 发表时间:
2017 - 期刊:
- 影响因子:1.9
- 作者:
Wenli Cai;Hailiang Liu - 通讯作者:
Hailiang Liu
Relaxation Dynamics, Scaling Limits and Convergence of Relaxation Schemes
松弛方案的松弛动力学、尺度限制和收敛性
- DOI:
10.1007/3-540-27907-5_20 - 发表时间:
2005 - 期刊:
- 影响因子:2.4
- 作者:
Hailiang Liu - 通讯作者:
Hailiang Liu
Hailiang Liu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hailiang Liu', 18)}}的其他基金
Critical Regularity, Selection Dynamics, and Condensation in Nonlinear Balance Laws
非线性平衡定律中的临界正则性、选择动力学和凝聚
- 批准号:
1812666 - 财政年份:2018
- 资助金额:
$ 17万 - 项目类别:
Continuing Grant
Recovery of high frequency wave fields, kinetic theory of photons and entropy satisfying methods
高频波场恢复、光子动力学理论和熵满足方法
- 批准号:
1312636 - 财政年份:2013
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Multiscale Wave Dynamics in Nonlinear Balance Laws
非线性平衡定律中的多尺度波动动力学
- 批准号:
0505975 - 财政年份:2005
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于tag-based单细胞转录组测序解析造血干细胞发育的可变剪接
- 批准号:81900115
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
应用Agent-Based-Model研究围术期单剂量地塞米松对手术切口愈合的影响及机制
- 批准号:81771933
- 批准年份:2017
- 资助金额:50.0 万元
- 项目类别:面上项目
Reality-based Interaction用户界面模型和评估方法研究
- 批准号:61170182
- 批准年份:2011
- 资助金额:57.0 万元
- 项目类别:面上项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
差异蛋白质组技术结合Array-based CGH 寻找骨肉瘤分子标志物
- 批准号:30470665
- 批准年份:2004
- 资助金额:8.0 万元
- 项目类别:面上项目
GaN-based稀磁半导体材料与自旋电子共振隧穿器件的研究
- 批准号:60376005
- 批准年份:2003
- 资助金额:20.0 万元
- 项目类别:面上项目
相似海外基金
Kinetic theory of subrecoil-laser-cooled gases based on infinite ergodic theory
基于无限遍历理论的亚反冲激光冷却气体动力学理论
- 批准号:
21K03392 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kinetic modelling of the gate adsorption of soft porous crystals based on in-situ stress measurements
基于原位应力测量的软多孔晶体门吸附动力学建模
- 批准号:
21H01690 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improvement in cyclability of zinc secondary electrodes based on kinetic analyses
基于动力学分析提高锌二次电极的循环性能
- 批准号:
21K14712 - 财政年份:2021
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Research on enhancement of therapeutic efficacy based on the kinetic analysis in oncolytic virotherapy for malignant brain tumors
基于动力学分析的恶性脑肿瘤溶瘤病毒治疗增强疗效研究
- 批准号:
20K09364 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
STTR Phase I: A kinetic and conformation based platform for targeting G-protein coupled receptors
STTR 第一阶段:基于动力学和构象的平台,用于靶向 G 蛋白偶联受体
- 批准号:
2015175 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
Standard Grant
Integrating omics, imaging and informatics to develop physiology-based kinetic (PBK) models for perturbation biology in an invertebrate model species
整合组学、成像和信息学,开发基于生理学的动力学 (PBK) 模型,用于无脊椎动物模型物种的微扰生物学
- 批准号:
BB/T508810/1 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
Training Grant
Kinetic analyses of thyroid hormone based on hepatic uptake transporter activity during the perinatal period
围产期基于肝摄取转运蛋白活性的甲状腺激素动力学分析
- 批准号:
20K07175 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kinetic study of the formation and decomposition process of humic substances based on comparison of non-destructive analysis of sediments and experiments simulating chemical processes
基于沉积物无损分析与化学过程模拟实验对比的腐殖质形成与分解过程动力学研究
- 批准号:
20K19958 - 财政年份:2020
- 资助金额:
$ 17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of multiparametric kinetic data and analytics workflows for the generation of an hiPSC-cardiomyocyte based cardiovascular model
开发多参数动力学数据和分析工作流程,用于生成基于 hiPSC 心肌细胞的心血管模型
- 批准号:
2308124 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Studentship
Development of multiparametric kinetic data and analytics workflows for the generation of an hiPSC-cardiomyocyte based cardiovascular model
开发多参数动力学数据和分析工作流程,用于生成基于 hiPSC 心肌细胞的心血管模型
- 批准号:
BB/T508482/1 - 财政年份:2019
- 资助金额:
$ 17万 - 项目类别:
Training Grant