Critical Regularity, Selection Dynamics, and Condensation in Nonlinear Balance Laws

非线性平衡定律中的临界正则性、选择动力学和凝聚

基本信息

  • 批准号:
    1812666
  • 负责人:
  • 金额:
    $ 24.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

In many mathematical models of physical reality, persistent patterns are formed and maintained by a balance of competing influences. Such phenomena arise naturally in fluid dynamics, evolutionary biology, quantum mechanics, and others. Examples range from forming eddies and coherent structures in turbulent flows to shock formation in gases, or natural selection in population dynamics, or formation of Bose-Einstein condensate (a new state of matter) in quantum mechanics. The goal of the current project is to develop novel mathematical tools and numerical algorithms for analyzing how such competing effects achieve dynamic balance or lead to critical solution behavior. The mathematical results are expected to be fundamental, and contribute to a body of understanding that promises to be useful to researchers across a range of disciplines. Critical regularity is a fundamental problem in fluid dynamics, the study of which can provide a deeper understanding of critical threshold phenomena occurring in wider applications. The understanding of photon condensate can result in methods which may potentially be suitable for designing novel light sources. This investigation focuses on the study of dynamic behavior in areas strongly motivated by applications and the theory of partial differential equations, with research objectives ranging from critical regularity in nonlinear balance laws, selection dynamics in trait-structured population models to energy transport in photon scattering. The mathematical models have one striking feature in common: the underlying dissipation is insufficient to prevent finite time singularity formation, and the persistence of the dynamic behavior hinges on a delicate balance among competing forces. These solution features depend on crossing a critical threshold associated with the initial configuration and/or the interaction kernels. High order numerical algorithms will be developed to solve these problems, with a unified approach so that several intrinsic solution structures are retained at the discrete level. Structure-preserving algorithms as such are important in capturing the correct physics over long time simulations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在物理现实的许多数学模型中,持久的模式是由竞争影响的平衡形成和维持的。这种现象在流体动力学、进化生物学、量子力学等领域自然出现。例子包括在湍流中形成涡流和相干结构,在气体中形成激波,或在人口动力学中的自然选择,或在量子力学中形成玻色-爱因斯坦凝聚(一种新的物质状态)。当前项目的目标是开发新型数学工具和数值算法,用于分析此类竞争效应如何实现动态平衡或导致临界解行为。 数学结果预计将是基本的,并有助于一个身体的理解,承诺是有用的研究人员在一系列学科。临界规律性是流体力学中的一个基本问题,对它的研究可以使人们更深入地了解在更广泛的应用中出现的临界阈值现象。对光子凝聚体的理解可以产生可能适用于设计新型光源的方法。本研究的重点是在强烈的应用和偏微分方程理论的动机领域的动力学行为的研究,从非线性平衡律的临界规律性,选择动力学特征结构的人口模型中的光子散射的能量传输的研究目标。这些数学模型有一个共同的显著特征:潜在的耗散不足以防止有限时间奇点的形成,而动力学行为的持续性取决于相互竞争的力量之间的微妙平衡。这些解决方案的功能取决于跨越与初始配置和/或相互作用内核相关联的临界阈值。高阶数值算法将被开发来解决这些问题,与一个统一的方法,使几个内在的解决方案结构被保留在离散水平。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyperbolic Problems: Theory, Numerics and Applications (2018): On structure-preserving high order methods for conservation laws
双曲问题:理论、数值和应用(2018):关于守恒定律的结构保持高阶方法
A dynamic mass transport method for Poisson-Nernst-Planck equations
  • DOI:
    10.1016/j.jcp.2022.111699
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Liu;W. Maimaitiyiming
  • 通讯作者:
    H. Liu;W. Maimaitiyiming
Radially symmetric solutions of the ultra-relativistic Euler equations
超相对论欧拉方程的径向对称解
  • DOI:
    10.4310/maa.2021.v28.n4.a1
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.3
  • 作者:
    Kunik, Matthias;Liu, Hailiang;Warnecke, Gerald
  • 通讯作者:
    Warnecke, Gerald
AEGD: adaptive gradient descent with energy
Third order maximum-principle-satisfying DG schemes for convection-diffusion problems with anisotropic diffusivity
  • DOI:
    10.1016/j.jcp.2019.04.028
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hui-Feng Yu;Hailiang Liu
  • 通讯作者:
    Hui-Feng Yu;Hailiang Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hailiang Liu其他文献

Asymptotic stability of relaxation shock profiles for hyperbolic conservation laws
  • DOI:
    10.1016/s0022-0396(03)00124-4
  • 发表时间:
    2003-08
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Hailiang Liu
  • 通讯作者:
    Hailiang Liu
Sobolev and Max Norm Error Estimates for Gaussian Beam Superpositions
高斯光束叠加的 Sobolev 和最大范数误差估计
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hailiang Liu;O. Runborg;N. Tanushev
  • 通讯作者:
    N. Tanushev
Asymptotic stability of shock profiles for nonconvex convection-diffusion equation☆
  • DOI:
    10.1016/s0893-9659(96)00124-3
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Hailiang Liu
  • 通讯作者:
    Hailiang Liu
A finite volume method for nonlocal competition-mutation equations with a gradient flow structure
Relaxation Dynamics, Scaling Limits and Convergence of Relaxation Schemes
松弛方案的松弛动力学、尺度限制和收敛性

Hailiang Liu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hailiang Liu', 18)}}的其他基金

Recovery of high frequency wave fields, kinetic theory of photons and entropy satisfying methods
高频波场恢复、光子动力学理论和熵满足方法
  • 批准号:
    1312636
  • 财政年份:
    2013
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Geometrically Based Kinetic Approach to Multi-scale Problems
多尺度问题的基于几何的动力学方法
  • 批准号:
    0907963
  • 财政年份:
    2009
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Multiscale Wave Dynamics in Nonlinear Balance Laws
非线性平衡定律中的多尺度波动动力学
  • 批准号:
    0505975
  • 财政年份:
    2005
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant

相似海外基金

Problems in Regularity Theory of Partial Differential Equations
偏微分方程正则论中的问题
  • 批准号:
    2350129
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Unique continuation and the regularity of elliptic PDEs and generalized minimal submanifolds
椭圆偏微分方程和广义最小子流形的唯一延拓和正则性
  • 批准号:
    2350351
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Research Grant
Low Regularity and Long Time Dynamics in Nonlinear Dispersive Flows
非线性弥散流中的低规律性和长时间动态
  • 批准号:
    2348908
  • 财政年份:
    2024
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
On Regularity Methods and Applications in Graph Theory
论图论中的正则方法及其应用
  • 批准号:
    2404167
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
CAREER: Model theoretic classification theory, Fourier analysis, and hypergraph regularity
职业:模型理论分类理论、傅立叶分析和超图正则性
  • 批准号:
    2239737
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
Unique Continuation and Regularity of Mappings and Functions in Several Complex Variables
多复变量映射和函数的唯一连续性和正则性
  • 批准号:
    2323531
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Standard Grant
Classification, STructure, Amenability and Regularity
分类、结构、顺应性和规律性
  • 批准号:
    EP/X026647/1
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Research Grant
Rigidity, Stability, Regularity, and Resolution Theorems in the Geometric Calculus of Variations
几何变分演算中的刚性、稳定性、正则性和解析定理
  • 批准号:
    2247544
  • 财政年份:
    2023
  • 资助金额:
    $ 24.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了