Analysis, Computation and Control of Coupled Partial Differential Equation Systems
耦合偏微分方程组的分析、计算与控制
基本信息
- 批准号:0908476
- 负责人:
- 金额:$ 18.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).In this project, the investigator embarks upon a nonlinear and numerical analysis study for systems of partial differential equations (PDE's) which constitute a coupling of two or more distinct PDE dynamics. The project is particularly focused on interactions between fluid and structural bodies--so-called fluid-structure interactions--which are omnipresent in nature. For these fluid-structure dynamics, as well as for other physically relevant coupled PDE models, a nonlinear theory is generated which will culminate in: (i) The derivation of control laws for these interactive models which can be successfully invoked so as to stabilize or steer both the fluid and structural components; (ii) numerical algorithms so as to approximate the profiles of the fluid-structure variables, for either controlled or uncontrolled regimes. In this part of the project, it is anticipated that a major role will be played by nonstandard implementations of the Babuska-Aziz and Babuska-Brezzi "inf-sup" theories. By means of such variational formulations, the coupling between fluid and structure components on the boundary interface will be resolved; resolution of this coupling is at the very heart of fluid-structure analysis. The qualitative and quantitative information gleaned from this project will provide a better understanding of the various physical phenomena which can described by interactive PDE models. For example, a fluid-structure PDE can be invoked to model the immersion of red blood cells within the plasma component of blood. These continuous and numerical approximation studies for modeling PDE dynamics would render it practicable to more accurately predict and simulate such blood flow dynamics. In particular, the project will culminate in the derivation of numerical algorithms which will be based upon the aforesaid Babuska-Brezzi variational formulations. As such, these algorithms would presumably have a higher degree of rigor than current available numerical methods. Moreover, the control laws we intend to consider in the project may lend insight into possible control engineering methodologies for the physical interactions governed by systems of coupled PDE's.
该奖项是根据2009年的《美国回收与再投资法》(公共法111-5)进行资助的。在该项目中,研究人员开始了针对偏微分方程(PDE)系统的非线性和数值分析研究,该研究构成了两种或多种不同不同的PDE动力学的耦合。 该项目尤其集中在流体和结构体之间的相互作用(如此被称为流体结构的相互作用)本质上是无处不在的。对于这些流体结构动力学以及其他物理相关的耦合PDE模型,生成了非线性理论,该理论将最终导致:(i)可以成功调用这些交互式模型的控制定律的推导,以稳定或引导流体和结构组件; (ii)数值算法,以便为受控或不受控制的态度近似流体结构变量的曲线。在该项目的这一部分中,预计Babuska-Aziz和Babuska-Brezzi“ Inf-Sup”理论的非标准实施将扮演重要角色。通过这种变异配方,将解决边界界面上流体和结构组件之间的耦合。该耦合的分辨率是流体结构分析的核心。该项目收集的定性和定量信息将更好地理解各种物理现象,这些现象可以通过交互式PDE模型描述。例如,可以调用流体结构PDE,以建模浸入血浆血浆中的红细胞。 这些用于建模PDE动力学的连续和数值近似研究将使更准确地预测和模拟此类血流动力学的可行。特别是,该项目将在数值算法的推导下达到顶点,该算法将基于上述Babuska-Brezzi变化表述。因此,这些算法可能比当前可用的数值方法具有更高的严格程度。此外,我们打算在项目中考虑的控制法可能会深入了解耦合PDE系统控制的物理相互作用的可能控制工程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Avalos其他文献
George Avalos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Avalos', 18)}}的其他基金
The Kansas-Missouri-Nebraska-Iowa State Conference in Partial Differential Equations, Dynamical Systems, and Applications
堪萨斯州-密苏里州-内布拉斯加州-爱荷华州偏微分方程、动力系统和应用会议
- 批准号:
1948942 - 财政年份:2020
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Mathematical Control Theory and Analysis of Partial Differential Equations Coupled Across a Boundary Interface
边界界面耦合偏微分方程的数学控制理论与分析
- 批准号:
1907823 - 财政年份:2019
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
The Kansas-Missouri-Nebraska (KUMUNU) Conference in PDE, Dynamical Systems and Applications
堪萨斯-密苏里-内布拉斯加州 (KUMUNU) 偏微分方程、动力系统和应用会议
- 批准号:
1658793 - 财政年份:2017
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Analysis and Control Theory for Moving Boundary and Nonlinear Phenomena in Interactive Partial Differential Equations
交互偏微分方程中动边界和非线性现象的分析与控制理论
- 批准号:
1616425 - 财政年份:2016
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Analysis and control of evolutionary plates and elastic structures
演化板块和弹性结构的分析与控制
- 批准号:
1211232 - 财政年份:2012
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Mathematical Analysis and Control of Interactive Partial Differential Equations
交互偏微分方程的数学分析与控制
- 批准号:
0606776 - 财政年份:2006
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Exact Controllability and Observation of Structural Acoustics and Thermoelastic Systems
结构声学和热弹性系统的精确可控性和观察
- 批准号:
0208121 - 财政年份:2002
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
- 批准号:
0196359 - 财政年份:2001
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
- 批准号:
9972349 - 财政年份:1999
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Controllability of a Fluid-Structure Interaction Arising in Chemical Vapor Deposition
化学气相沉积中产生的流固相互作用的可控性
- 批准号:
9710981 - 财政年份:1997
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
相似国自然基金
Hida-Malliavin分析方法在带跳正倒向随机系统及相关领域的应用
- 批准号:11871010
- 批准年份:2018
- 资助金额:53.0 万元
- 项目类别:面上项目
基于GPU并行计算的复杂疾病基因互作关联分析新方法研究
- 批准号:81803330
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于广义Markov跳变系统理论的DNA计算系统分析与控制
- 批准号:61802040
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于皮层振荡的帕金森状态闭环控制研究
- 批准号:61801273
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
细胞微环境介导肿瘤耐药性的多尺度系统建模、分析与控制
- 批准号:11871070
- 批准年份:2018
- 资助金额:54.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
$ 18.29万 - 项目类别:
Continuing Grant
Theory of Computation for Analysis and Control of Discrete-Time Dynamical Systems
离散时间动力系统分析与控制计算理论
- 批准号:
547093-2020 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis and control of multipartite quantum interactions for computation and communication
用于计算和通信的多方量子相互作用的分析和控制
- 批准号:
RGPIN-2016-06117 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
Discovery Grants Program - Individual
Targeting computation in prefrontal cortex to improve decision-making and reduce compulsive drinking in rodent models.
针对前额皮质的计算,以改善啮齿动物模型中的决策并减少强迫性饮酒。
- 批准号:
10277796 - 财政年份:2021
- 资助金额:
$ 18.29万 - 项目类别:
Interaction of external inputs with internal dynamics: influence of brain states on neural computation and behavior
外部输入与内部动态的相互作用:大脑状态对神经计算和行为的影响
- 批准号:
10047726 - 财政年份:2021
- 资助金额:
$ 18.29万 - 项目类别: