Analysis, Computation and Control of Coupled Partial Differential Equation Systems
耦合偏微分方程组的分析、计算与控制
基本信息
- 批准号:0908476
- 负责人:
- 金额:$ 18.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).In this project, the investigator embarks upon a nonlinear and numerical analysis study for systems of partial differential equations (PDE's) which constitute a coupling of two or more distinct PDE dynamics. The project is particularly focused on interactions between fluid and structural bodies--so-called fluid-structure interactions--which are omnipresent in nature. For these fluid-structure dynamics, as well as for other physically relevant coupled PDE models, a nonlinear theory is generated which will culminate in: (i) The derivation of control laws for these interactive models which can be successfully invoked so as to stabilize or steer both the fluid and structural components; (ii) numerical algorithms so as to approximate the profiles of the fluid-structure variables, for either controlled or uncontrolled regimes. In this part of the project, it is anticipated that a major role will be played by nonstandard implementations of the Babuska-Aziz and Babuska-Brezzi "inf-sup" theories. By means of such variational formulations, the coupling between fluid and structure components on the boundary interface will be resolved; resolution of this coupling is at the very heart of fluid-structure analysis. The qualitative and quantitative information gleaned from this project will provide a better understanding of the various physical phenomena which can described by interactive PDE models. For example, a fluid-structure PDE can be invoked to model the immersion of red blood cells within the plasma component of blood. These continuous and numerical approximation studies for modeling PDE dynamics would render it practicable to more accurately predict and simulate such blood flow dynamics. In particular, the project will culminate in the derivation of numerical algorithms which will be based upon the aforesaid Babuska-Brezzi variational formulations. As such, these algorithms would presumably have a higher degree of rigor than current available numerical methods. Moreover, the control laws we intend to consider in the project may lend insight into possible control engineering methodologies for the physical interactions governed by systems of coupled PDE's.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。在这个项目中,研究人员开始对偏微分方程(PDE)系统进行非线性和数值分析研究,该系统构成两个或多个不同PDE动力学的耦合。 该项目特别关注流体和结构体之间的相互作用-所谓的流体-结构相互作用-这在自然界中无处不在。对于这些流体-结构动力学,以及对于其他物理相关的耦合PDE模型,产生非线性理论,其将最终导致:(i)这些交互模型的控制律的推导,其可以被成功地调用以便稳定或操纵流体和结构部件;(ii)数值算法,以便近似流体-结构变量的轮廓,用于受控或非受控状态。在项目的这一部分,预计Babuska-Aziz和Babuska-Brezzi“inf-sup”理论的非标准实现将发挥重要作用。通过这样的变分公式,流体和结构组件之间的耦合的边界界面将被解决,这种耦合的分辨率是在流体-结构分析的核心。从这个项目中收集的定性和定量信息将提供一个更好的理解,可以描述的各种物理现象的交互式偏微分方程模型。例如,可以调用流体结构PDE来模拟红细胞在血液的血浆成分内的浸入。 这些连续的和数值近似的研究建模PDE动力学将使其切实可行的更准确地预测和模拟这样的血流动力学。特别是,该项目将最终在数值算法的推导,这将是基于上述巴布斯卡-Brezzi变分制剂。因此,这些算法可能比当前可用的数值方法具有更高的严格程度。此外,我们打算在该项目中考虑的控制律可能有助于深入了解耦合PDE系统所管理的物理相互作用的可能的控制工程方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Avalos其他文献
Gevrey Regularity for A Fluid–Structure Interaction Model
- DOI:
10.1007/s10957-025-02625-4 - 发表时间:
2025-02-17 - 期刊:
- 影响因子:1.500
- 作者:
George Avalos;Dylan McKnight;Sara McKnight - 通讯作者:
Sara McKnight
The Strong Stability and Instability of a Fluid-Structure Semigroup
- DOI:
10.1007/s00245-006-0884-z - 发表时间:
2007-03-01 - 期刊:
- 影响因子:1.700
- 作者:
George Avalos - 通讯作者:
George Avalos
George Avalos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Avalos', 18)}}的其他基金
The Kansas-Missouri-Nebraska-Iowa State Conference in Partial Differential Equations, Dynamical Systems, and Applications
堪萨斯州-密苏里州-内布拉斯加州-爱荷华州偏微分方程、动力系统和应用会议
- 批准号:
1948942 - 财政年份:2020
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Mathematical Control Theory and Analysis of Partial Differential Equations Coupled Across a Boundary Interface
边界界面耦合偏微分方程的数学控制理论与分析
- 批准号:
1907823 - 财政年份:2019
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
The Kansas-Missouri-Nebraska (KUMUNU) Conference in PDE, Dynamical Systems and Applications
堪萨斯-密苏里-内布拉斯加州 (KUMUNU) 偏微分方程、动力系统和应用会议
- 批准号:
1658793 - 财政年份:2017
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Analysis and Control Theory for Moving Boundary and Nonlinear Phenomena in Interactive Partial Differential Equations
交互偏微分方程中动边界和非线性现象的分析与控制理论
- 批准号:
1616425 - 财政年份:2016
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Analysis and control of evolutionary plates and elastic structures
演化板块和弹性结构的分析与控制
- 批准号:
1211232 - 财政年份:2012
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Mathematical Analysis and Control of Interactive Partial Differential Equations
交互偏微分方程的数学分析与控制
- 批准号:
0606776 - 财政年份:2006
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Exact Controllability and Observation of Structural Acoustics and Thermoelastic Systems
结构声学和热弹性系统的精确可控性和观察
- 批准号:
0208121 - 财政年份:2002
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
- 批准号:
0196359 - 财政年份:2001
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
- 批准号:
9972349 - 财政年份:1999
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
Controllability of a Fluid-Structure Interaction Arising in Chemical Vapor Deposition
化学气相沉积中产生的流固相互作用的可控性
- 批准号:
9710981 - 财政年份:1997
- 资助金额:
$ 18.29万 - 项目类别:
Standard Grant
相似国自然基金
基于分位数g-computation的多污染物联合空气质量健康指数构建及预测效果评价
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于g-computation控制纵向数据未测混杂因素的因果推断模型构建及应用研究
- 批准号:81903416
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
$ 18.29万 - 项目类别:
Continuing Grant
Theory of Computation for Analysis and Control of Discrete-Time Dynamical Systems
离散时间动力系统分析与控制计算理论
- 批准号:
547093-2020 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis and control of multipartite quantum interactions for computation and communication
用于计算和通信的多方量子相互作用的分析和控制
- 批准号:
RGPIN-2016-06117 - 财政年份:2022
- 资助金额:
$ 18.29万 - 项目类别:
Discovery Grants Program - Individual
Theory of Computation for Analysis and Control of Discrete-Time Dynamical Systems
离散时间动力系统分析与控制计算理论
- 批准号:
547093-2020 - 财政年份:2021
- 资助金额:
$ 18.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis and control of multipartite quantum interactions for computation and communication
用于计算和通信的多方量子相互作用的分析和控制
- 批准号:
RGPIN-2016-06117 - 财政年份:2021
- 资助金额:
$ 18.29万 - 项目类别:
Discovery Grants Program - Individual
Analysis and control of multipartite quantum interactions for computation and communication
用于计算和通信的多方量子相互作用的分析和控制
- 批准号:
RGPIN-2016-06117 - 财政年份:2020
- 资助金额:
$ 18.29万 - 项目类别:
Discovery Grants Program - Individual
Theory of Computation for Analysis and Control of Discrete-Time Dynamical Systems
离散时间动力系统分析与控制计算理论
- 批准号:
547093-2020 - 财政年份:2020
- 资助金额:
$ 18.29万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Analysis and control of multipartite quantum interactions for computation and communication
用于计算和通信的多方量子相互作用的分析和控制
- 批准号:
RGPIN-2016-06117 - 财政年份:2019
- 资助金额:
$ 18.29万 - 项目类别:
Discovery Grants Program - Individual
Analysis and control of multipartite quantum interactions for computation and communication
用于计算和通信的多方量子相互作用的分析和控制
- 批准号:
RGPIN-2016-06117 - 财政年份:2018
- 资助金额:
$ 18.29万 - 项目类别:
Discovery Grants Program - Individual
Analysis and control of multipartite quantum interactions for computation and communication
用于计算和通信的多方量子相互作用的分析和控制
- 批准号:
RGPIN-2016-06117 - 财政年份:2017
- 资助金额:
$ 18.29万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




