The Kansas-Missouri-Nebraska-Iowa State Conference in Partial Differential Equations, Dynamical Systems, and Applications
堪萨斯州-密苏里州-内布拉斯加州-爱荷华州偏微分方程、动力系统和应用会议
基本信息
- 批准号:1948942
- 负责人:
- 金额:$ 2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will partially support participation of the diverse group of early career mathematicians in the two-day Conference entitled, "The KUMUNU-ISU Conference in PDE, Dynamical Systems and Applications", to be held April 25-26, 2020, at the University of Nebraska-Lincoln (UNL). (The Conference website is https://www.math.unl.edu/kumunu-2020.) This Meeting will be the sixth in a series of Meetings put together by the KUMUNU-ISU contingent; i.e., mathematics faculty from the Universities of Kansas, Missouri, Nebraska, and Iowa State University. The KUMUNU-ISU 2020 will feature world-acclaimed researchers in Partial Differential Equations (PDE's) and Applied Mathematics, as well as those who are in the relatively early stages of their career, and/or are representatives of groups that have historically not had great representation in Applied Mathematics. The organizers will put an effort to recruit participants from institutions where opportunities to attend large Research Conferences might be limited.The conference will include world-class experts who work on the Navier-Stokes Equations and other modelling PDE of fluid and fluid-structure dynamics. Within the framework of KUMUNU 2020, the research interests of such nonlinear fluid PDE researchers will be juxtaposed with those of mathematicians who are interested in the asymptotic behavior of solutions to general nonlinear evolution equations. The conference will also feature speakers and participants with interests in scientific computation and PDE Control Theory; these will include researchers who have documented interest in applying their results and methodologies to problems which involve the Navier-Stokes and other fluid and fluid-structure PDE's. Subsequently, there are expected collaborative efforts among these KUMUNU 2020 participants.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将部分支持早期职业数学家的多样化小组参加为期两天的会议,题为“ PDE的Kumunu-ISU会议,动力系统和应用程序”,将于2020年4月25日至26日在内布拉斯加林肯大学举行。 (会议网站是https://www.math.unl.edu/kumunu-2020。)这次会议将是Kumunu-ISU特遣队组合的一系列会议中的第六次会议;即,来自堪萨斯州,密苏里州,内布拉斯加州和爱荷华州立大学的数学学院。 Kumunu-ISU 2020年将以局部微分方程(PDE)和应用数学以及在职业生涯相对早期阶段和/或是历史上在应用数学中没有很好代表的团体的代表中以世界巨大的研究人员的身份以及那些处于相对较早的阶段。 组织者将努力从机构的招募参与者参加大型研究会议的机会可能受到限制。会议将包括从事Navier-Stokes方程和其他液体和流体结构动态PDE的世界级专家。在2020年Kumunu的框架内,此类非线性流体PDE研究人员的研究兴趣将与对通用非线性进化方程的解决方案的渐近行为感兴趣的数学家并列。会议还将以对科学计算和PDE控制理论感兴趣的演讲者和参与者为特色;这些将包括记录在将其结果和方法应用于涉及Navier-Stokes以及其他流体和流体结构PDE的问题上的兴趣的研究人员。随后,在这些2020年Kumunu的参与者中有预期的合作努力。该奖项反映了NSF的法定任务,并使用基金会的知识分子优点和更广泛的影响评估标准,被认为是值得通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Avalos其他文献
George Avalos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Avalos', 18)}}的其他基金
Mathematical Control Theory and Analysis of Partial Differential Equations Coupled Across a Boundary Interface
边界界面耦合偏微分方程的数学控制理论与分析
- 批准号:
1907823 - 财政年份:2019
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
The Kansas-Missouri-Nebraska (KUMUNU) Conference in PDE, Dynamical Systems and Applications
堪萨斯-密苏里-内布拉斯加州 (KUMUNU) 偏微分方程、动力系统和应用会议
- 批准号:
1658793 - 财政年份:2017
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Analysis and Control Theory for Moving Boundary and Nonlinear Phenomena in Interactive Partial Differential Equations
交互偏微分方程中动边界和非线性现象的分析与控制理论
- 批准号:
1616425 - 财政年份:2016
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Analysis and control of evolutionary plates and elastic structures
演化板块和弹性结构的分析与控制
- 批准号:
1211232 - 财政年份:2012
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Analysis, Computation and Control of Coupled Partial Differential Equation Systems
耦合偏微分方程组的分析、计算与控制
- 批准号:
0908476 - 财政年份:2009
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Mathematical Analysis and Control of Interactive Partial Differential Equations
交互偏微分方程的数学分析与控制
- 批准号:
0606776 - 财政年份:2006
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Exact Controllability and Observation of Structural Acoustics and Thermoelastic Systems
结构声学和热弹性系统的精确可控性和观察
- 批准号:
0208121 - 财政年份:2002
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
- 批准号:
0196359 - 财政年份:2001
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
- 批准号:
9972349 - 财政年份:1999
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
Controllability of a Fluid-Structure Interaction Arising in Chemical Vapor Deposition
化学气相沉积中产生的流固相互作用的可控性
- 批准号:
9710981 - 财政年份:1997
- 资助金额:
$ 2万 - 项目类别:
Standard Grant
相似海外基金
All of Us Research Program Heartland Consortium (AoURP-HC)
我们所有人研究计划中心联盟 (AoURP-HC)
- 批准号:
10871732 - 财政年份:2023
- 资助金额:
$ 2万 - 项目类别: