The Kansas-Missouri-Nebraska (KUMUNU) Conference in PDE, Dynamical Systems and Applications

堪萨斯-密苏里-内布拉斯加州 (KUMUNU) 偏微分方程、动力系统和应用会议

基本信息

  • 批准号:
    1658793
  • 负责人:
  • 金额:
    $ 1.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-04-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

This award will provide support for participants, especially graduate students, junior researchers, women and mathematicians from under-represented groups in the sciences, to attend the third regional conference "KUMUNU Conference in Partial Differential Equations, Dynamical Systems and Applications" (KUMUNU Lincoln 2017) to be held from April 22-23, 2017, at the University of Nebraska-Lincoln. The abbreviation KUMUNU signifies the collaboration of faculty from the Universities of Kansas, Missouri, and Nebraska. The Conference webpage is http://www.math.unl.edu/events/special/kumunu2017. Similarly to the two previous KUMUNU Conferences, the KUMUNU Lincoln 2017 Meeting is being organized with a view toward featuring eminent mathematicians who will deliver lectures on their respective research programs to a diverse audience of mathematicians. KUMUNU Lincoln 2017 will serve as a forum for interaction of established scientist with graduate students and early career faculty, as well as with members of smaller regional academic institutions. One of the objectives of the conference is the initiation of collaborations among Partial Differential Equations (PDE) specialists who, but for their respective participation in KUMUNU Lincoln 2017, might not otherwise have occasion to collectively meet in a scientific setting. It is anticipated that these nascent collaborations will involve recent PhDs and facilitate development of their academic careers. The invited talks will be devoted to the following areas of research: (i) long time behavior of solutions to nonlinear PDE; and (ii) analysis of those PDE systems that describe certain fluid-structure interactions. In particular, the Conference Speakers will address qualitative issues concerning the existence of global attracting sets for corresponding "trajectories" (solutions) of given nonlinear evolutionary PDE. Some speakers will address the rigorous and numerical analysis of certain fluid-structure PDE dynamics, and present their latest findings in these research directions. In addition, it is expected that the collaboration between researchers in long time behavior of nonlinear evolutionary PDE and fluid-structure PDE specialists will serve as a departure point from which new inroads will be made towards understanding the asymptotic behavior of solutions to nonlinear fluid-structure PDE dynamics. The projected collaborations arising from KUMUNU Lincoln 2017 could provide new mathematical insights into experimentally and numerically observed fluid-structure phenomena.
该奖项将为参与者提供支持,特别是来自科学领域代表性不足群体的研究生、初级研究人员、女性和数学家,参加第三届区域会议“KUMUU偏微分方程、动力系统和应用会议”(KUMUU林肯2017)将于2017年4月22日至23日在内布拉斯加大学-林肯分校举行。缩写KUMUN表示来自堪萨斯、密苏里州和内布拉斯加大学的教师的合作。会议的网页是http://www.math.unl.edu/events/special/kumunu2017。与前两届KUMUU会议类似,KUMUU林肯2017会议正在组织中,旨在邀请杰出的数学家,他们将向不同的数学家观众提供各自研究项目的讲座。KUMUU林肯2017年将作为一个论坛,建立科学家与研究生和早期职业教师的互动,以及与较小的区域学术机构的成员。会议的目标之一是发起偏微分方程(PDE)专家之间的合作,但他们各自参加了KUMUU林肯2017,否则可能没有机会在科学环境中集体会面。预计这些新生的合作将涉及最近的博士,并促进他们的学术生涯的发展。邀请的演讲将致力于以下研究领域:(i)非线性PDE解决方案的长期行为;以及(ii)描述某些流体-结构相互作用的PDE系统的分析。特别是,会议的发言者将解决定性问题,有关存在的全球吸引集相应的“轨迹”(解决方案)给定的非线性演化偏微分方程。一些演讲者将讨论某些流体结构PDE动力学的严格和数值分析,并介绍他们在这些研究方向的最新发现。此外,预计研究人员之间的合作,在长期的非线性演化PDE和流体结构PDE专家的行为将作为一个出发点,从新的进展将朝着了解非线性流体结构PDE动力学的解决方案的渐近行为。从KUMUU林肯2017产生的预计合作可以提供新的数学见解实验和数值观察到的流体结构现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Avalos其他文献

Gevrey Regularity for A Fluid–Structure Interaction Model
The Strong Stability and Instability of a Fluid-Structure Semigroup

George Avalos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Avalos', 18)}}的其他基金

The Kansas-Missouri-Nebraska-Iowa State Conference in Partial Differential Equations, Dynamical Systems, and Applications
堪萨斯州-密苏里州-内布拉斯加州-爱荷华州偏微分方程、动力系统和应用会议
  • 批准号:
    1948942
  • 财政年份:
    2020
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Mathematical Control Theory and Analysis of Partial Differential Equations Coupled Across a Boundary Interface
边界界面耦合偏微分方程的数学控制理论与分析
  • 批准号:
    1907823
  • 财政年份:
    2019
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Analysis and Control Theory for Moving Boundary and Nonlinear Phenomena in Interactive Partial Differential Equations
交互偏微分方程中动边界和非线性现象的分析与控制理论
  • 批准号:
    1616425
  • 财政年份:
    2016
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Analysis and control of evolutionary plates and elastic structures
演化板块和弹性结构的分析与控制
  • 批准号:
    1211232
  • 财政年份:
    2012
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Analysis, Computation and Control of Coupled Partial Differential Equation Systems
耦合偏微分方程组的分析、计算与控制
  • 批准号:
    0908476
  • 财政年份:
    2009
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Mathematical Analysis and Control of Interactive Partial Differential Equations
交互偏微分方程的数学分析与控制
  • 批准号:
    0606776
  • 财政年份:
    2006
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Exact Controllability and Observation of Structural Acoustics and Thermoelastic Systems
结构声学和热弹性系统的精确可控性和观察
  • 批准号:
    0208121
  • 财政年份:
    2002
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
  • 批准号:
    0196359
  • 财政年份:
    2001
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
  • 批准号:
    9972349
  • 财政年份:
    1999
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Controllability of a Fluid-Structure Interaction Arising in Chemical Vapor Deposition
化学气相沉积中产生的流固相互作用的可控性
  • 批准号:
    9710981
  • 财政年份:
    1997
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant

相似海外基金

Travel Grant: Enabling Students and Early-Career Scientists to Attend the Eleventh (11th) International GEOS-Chem Meeting (IGC11); Saint Louis, Missouri; June 11-14, 2024
旅费补助:使学生和早期职业科学家能够参加第十一届(11 届)国际 GEOS-Chem 会议(IGC11);
  • 批准号:
    2409754
  • 财政年份:
    2024
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
EA: Upgrade of the X-ray tomographic microscope to expand operations at the University of Missouri X-ray Microanalysis Laboratory
EA:升级 X 射线断层扫描显微镜以扩大密苏里大学 X 射线微量分析实验室的业务
  • 批准号:
    2242732
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
MASTER: Missouri Advanced Security Training, Educa
硕士:密苏里州高级安全培训,Educa
  • 批准号:
    2335969
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Continuing Grant
REU Site: Botany and Conservation Biology Research at the Missouri Botanical Garden
REU 网站:密苏里植物园植物学和保护生物学研究
  • 批准号:
    2243824
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Missouri Louis Stokes Alliance for Minority Participation (MOLSAMP): Scaling Knowledge and Skill Sets of Underrepresented Minority Students in STEM Across the State of Missouri
密苏里州路易斯斯托克斯少数族裔参与联盟 (MOLSAMP):扩展密苏里州 STEM 领域代表性不足的少数族裔学生的知识和技能
  • 批准号:
    2308599
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Continuing Grant
Resources and Workforce Development for Research on NIH/NIAID High Priority Pathogens at the University of Missouri Regional Biocontainment Laboratory
密苏里大学区域生物防护实验室 NIH/NIAID 高优先级病原体研究的资源和劳动力发展
  • 批准号:
    10793827
  • 财政年份:
    2023
  • 资助金额:
    $ 1.94万
  • 项目类别:
Collaborative Research: A Partnership in Central Missouri in the Era of Multi-messenger Astrophysics
合作研究:多信使天体物理学时代密苏里州中部的合作伙伴关系
  • 批准号:
    2219183
  • 财政年份:
    2022
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
IUCRC Phase I University of Missouri: Center to Stream Healthcare In Place (C2SHIP)
IUCRC 第一阶段密苏里大学:医疗保健就地流中心 (C2SHIP)
  • 批准号:
    2209854
  • 财政年份:
    2022
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Continuing Grant
The Tenth (10th) International GEOS-Chem Meeting (IGC10); Saint Louis, Missouri; June 7-10, 2022
第十届(10th)国际GEOS-Chem会议(IGC10);
  • 批准号:
    2218241
  • 财政年份:
    2022
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
Collaborative Research: A Partnership in Central Missouri in the Era of Multi-messenger Astrophysics
合作研究:多信使天体物理学时代密苏里州中部的合作伙伴关系
  • 批准号:
    2219212
  • 财政年份:
    2022
  • 资助金额:
    $ 1.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了