Exact Controllability and Observation of Structural Acoustics and Thermoelastic Systems

结构声学和热弹性系统的精确可控性和观察

基本信息

  • 批准号:
    0208121
  • 负责人:
  • 金额:
    $ 11.79万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2002
  • 资助国家:
    美国
  • 起止时间:
    2002-07-01 至 2006-06-30
  • 项目状态:
    已结题

项目摘要

0208121AvalosThis project is concerned with studying exact boundary controllability properties of those systems of coupled partial differential equations (PDE's) which govern structural acoustic flow within a chamber. Exact and null boundary controllability problems for two-dimensional systems of thermoelasticity will also be studied. In part, the work will entail a study of the dual problem; namely, the attainment of related observability inequalities for solutions of homogeneous adjoint equations. In line with the intended engineering applications, the focus will be on situations which allow control of the structural acoustic dynamics on as small a (boundary) control region as possible. Moreover, this project is aimed at finding conditions on the geometry and prescribed controls so that, with control implemented on the flexible portion of the acoustic chamber only, one will have exact controllability of the acoustic flow, for arbitrary initial data of finite energy. It is anticipated that key ingredients in the work will include the following: (i) sharp trace regularity for the wave equation in the absence of the so-called Lopatinski condition (intrinsic to the wave equation under Neumann boundary conditions); (ii) microlocal analytical estimates which will allow the absorption of tangential wave traces by time derivatives on the boundary; and (iii) recent results involving Carleman's estimates for the wave equation with controlled Neumann part of the boundary. In addition, the project will focus on problems of linear and (globally) nonlinear exact controllability for thermoelastic systems. In particular, thermoelastic PDE's will be considered which have their associated (non-Lipschitz) nonlinearities in place; e.g., the von Karman bracket and the quasilinearities which appear in the modeling of extensible plates. This work will attempt to use, in an essential way, the now-known analyticity of linearized thermoelastic models and our recent stability work for uncontrolled (but fully nonlinear) thermoelastic systems. Examples of coupled partial differential equations (PDE's), such as those to be investigated, have long existed in the literature. However, recent innovations in smart material technology, and the potential applications of these innovations within the context of control engineering design, have greatly increased the interest in these PDE models. The project is aimed at obtaining information about certain qualitative properties of these equations, which in turn can be used to design effective control laws for the structures/interactions that these equations govern. For example, structural acoustic PDE's are used to model the interaction of an aircraft cabin's interior acoustic field with the surrounding walls of the cabin. For the benefit of the passengers, it is desirable to negate or control pressure disturbances that act directly on the interior acoustic field. These disturbances typically emanate from outside the cabin environment; e.g., vibrations due to aircraft engine and propeller noise, or effects due to weather turbulence. In practice, engineers attempt to control this external noise by placing piezoelectric actuators/sensors on a portion of the cabin wall, these devices to act in such a way so as to remove, or at least lessen, the harmful acoustic pressure effects. However, the efficacy of this technology is profoundly sensitive to the shape of the cabin, as well as to the particular region of the cabin walls where the actuators are placed. The goals of this project include: (i) the precise mathematical characterization of those cabin geometries for which active control design by piezoelectric actuation is indeed possible; and (ii) when such control design is practicable, the construction of a reliable method to prescribe the amount and region of control actuation which will be necessary to maintain a calm acoustic field within the cabin.
0208121Avalos该项目涉及研究控制室内结构声流的耦合偏微分方程(PDE)系统的精确边界可控性特性。还将研究二维热弹性系统的精确和零边界可控性问题。在某种程度上,这项工作将需要研究对偶问题;即,齐次伴随方程解的相关可观测性不等式的实现。根据预期的工程应用,重点将放在允许在尽可能小的(边界)控制区域上控制结构声动力学的情况。此外,该项目的目的是寻找几何条件和规定的控制,以便仅在声室的柔性部分上实施控制,对于有限能量的任意初始数据,人们将具有声流的精确可控性。预计这项工作的关键要素将包括以下内容:(i)在不存在所谓的洛帕廷斯基条件(诺依曼边界条件下的波动方程所固有的)的情况下,波动方程的尖锐迹规律性; (ii) 微局域分析估计,允许通过边界上的时间导数吸收切向波迹线; (iii) 最近的结果涉及卡尔曼对边界受控诺伊曼部分的波动方程的估计。此外,该项目将重点研究热弹性系统的线性和(全局)非线性精确可控性问题。特别是,将考虑具有相关(非 Lipschitz)非线性的热弹性偏微分方程;例如,冯卡门支架和可延伸板建模中出现的拟线性。这项工作将尝试以一种重要的方式使用现在已知的线性热弹性模型的分析性以及我们最近对不受控(但完全非线性)热弹性系统的稳定性工作。耦合偏微分方程 (PDE) 的示例(例如要研究的那些)在文献中早已存在。然而,智能材料技术的最新创新以及这些创新在控制工程设计背景下的潜在应用大大增加了人们对这些偏微分方程模型的兴趣。该项目旨在获取有关这些方程的某些定性属性的信息,这些信息反过来可用于为这些方程所控制的结构/相互作用设计有效的控制律。例如,结构声学偏微分方程用于模拟飞机机舱内部声场与机舱周围墙壁的相互作用。为了乘客的利益,需要消除或控制直接作用于内部声场的压力扰动。这些干扰通常来自机舱外部环境;例如,飞机发动机和螺旋桨噪音引起的振动,或天气湍流造成的影响。在实践中,工程师试图通过将压电致动器/传感器放置在机舱壁的一部分上来控制这种外部噪声,这些设备的作用方式是消除或至少减轻有害的声压效应。然而,该技术的功效对驾驶室的形状以及驾驶室壁上放置执行器的特定区域非常敏感。该项目的目标包括:(i)对那些确实可以通过压电驱动进行主动控制设计的机舱几何形状进行精确的数学表征; (ii) 当这种控制设计可行时,建立一种可靠的方法来规定控制驱动的数量和区域,这对于维持机舱内的平静声场是必要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

George Avalos其他文献

Gevrey Regularity for A Fluid–Structure Interaction Model
The Strong Stability and Instability of a Fluid-Structure Semigroup

George Avalos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('George Avalos', 18)}}的其他基金

The Kansas-Missouri-Nebraska-Iowa State Conference in Partial Differential Equations, Dynamical Systems, and Applications
堪萨斯州-密苏里州-内布拉斯加州-爱荷华州偏微分方程、动力系统和应用会议
  • 批准号:
    1948942
  • 财政年份:
    2020
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
Mathematical Control Theory and Analysis of Partial Differential Equations Coupled Across a Boundary Interface
边界界面耦合偏微分方程的数学控制理论与分析
  • 批准号:
    1907823
  • 财政年份:
    2019
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
The Kansas-Missouri-Nebraska (KUMUNU) Conference in PDE, Dynamical Systems and Applications
堪萨斯-密苏里-内布拉斯加州 (KUMUNU) 偏微分方程、动力系统和应用会议
  • 批准号:
    1658793
  • 财政年份:
    2017
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
Analysis and Control Theory for Moving Boundary and Nonlinear Phenomena in Interactive Partial Differential Equations
交互偏微分方程中动边界和非线性现象的分析与控制理论
  • 批准号:
    1616425
  • 财政年份:
    2016
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
Analysis and control of evolutionary plates and elastic structures
演化板块和弹性结构的分析与控制
  • 批准号:
    1211232
  • 财政年份:
    2012
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
Analysis, Computation and Control of Coupled Partial Differential Equation Systems
耦合偏微分方程组的分析、计算与控制
  • 批准号:
    0908476
  • 财政年份:
    2009
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
Mathematical Analysis and Control of Interactive Partial Differential Equations
交互偏微分方程的数学分析与控制
  • 批准号:
    0606776
  • 财政年份:
    2006
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
  • 批准号:
    0196359
  • 财政年份:
    2001
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
A Mathematical Control Theory for the Partial Differential Equations of Thermal/Structure and Structural Acoustic Interactions
热/结构和结构声相互作用的偏微分方程的数学控制理论
  • 批准号:
    9972349
  • 财政年份:
    1999
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant
Controllability of a Fluid-Structure Interaction Arising in Chemical Vapor Deposition
化学气相沉积中产生的流固相互作用的可控性
  • 批准号:
    9710981
  • 财政年份:
    1997
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Standard Grant

相似海外基金

Projections to the brainstem from the cerebellum involved in the control of masticatory movements and their controllability
小脑向脑干的投射参与咀嚼运动及其可控性的控制
  • 批准号:
    23K09118
  • 财政年份:
    2023
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Neurodevelopmental Mechanisms of Stressor Controllability and Resilience
职业:压力源可控性和弹性的神经发育机制
  • 批准号:
    2145372
  • 财政年份:
    2022
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Continuing Grant
Controllability of Complex Networks
复杂网络的可控性
  • 批准号:
    RGPIN-2017-06413
  • 财政年份:
    2022
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Discovery Grants Program - Individual
Cortical endocannabinoid signaling and stress controllability
皮质内源性大麻素信号传导和压力可控性
  • 批准号:
    RGPIN-2017-05401
  • 财政年份:
    2022
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Discovery Grants Program - Individual
Controllability Improvement of Silicon Surface Finishing Using Electroless Reaction and Its Application for Resource Recovery and Elemental Analysis
化学镀反应硅表面处理的可控性改进及其在资源回收和元素分析中的应用
  • 批准号:
    22K04779
  • 财政年份:
    2022
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cortical endocannabinoid signaling and stress controllability
皮质内源性大麻素信号传导和压力可控性
  • 批准号:
    RGPIN-2017-05401
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Discovery Grants Program - Individual
Study on gain controllability of few-mode erbium-doped fibre amplifier
少模掺铒光纤放大器增益可控性研究
  • 批准号:
    21K04069
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation on a general nonlinear control based on mapping learning with controllability and reachability
基于映射学习的可控可达非线性控制研究
  • 批准号:
    21H03518
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of dynamics and controllability of optically injected valley carriers
光注入谷载流子的动力学和可控性研究
  • 批准号:
    21K03420
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Controllability of Complex Networks
复杂网络的可控性
  • 批准号:
    RGPIN-2017-06413
  • 财政年份:
    2021
  • 资助金额:
    $ 11.79万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了