Statistical mechanics of generalized conservative systems: self-organization by non-integrable topological constraints and non-elliptic diffusion processes

广义保守系统的统计力学:不可积拓扑约束和非椭圆扩散过程的自组织

基本信息

  • 批准号:
    18J01729
  • 负责人:
  • 金额:
    $ 2.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2018
  • 资助国家:
    日本
  • 起止时间:
    2018-04-25 至 2021-03-31
  • 项目状态:
    已结题

项目摘要

The aim of the present research is to formulate the statistical theory of mechanical systems subject to non-integrable topological constraints, and to create the mathematical objects, concepts, and methods that are required to achieve this goal. The following results were obtained:1、Ideal systems exhibit a Poisson structure. However, the algebraic structure of non-ideal systems is an open issue. Here, we showed that the Fokker-Planck equation describing diffusion processes in noncanonical Hamiltonian systems exhibits a metriplectic structure, i.e. an algebraic formalism that generates the equation in consistency with the thermodynamic principles of energy conservation and entropy growth.2、The statistical properties of topologically constrained mechanical systems can be related to the geometric properties of stationary solutions of the ideal Euler equations. Here, we investigated the existence of stationary solutions of the Euler equations without continuous Euclidean symmetries and with non-vanishing pressure gradients, and provided smooth analytic examples in bounded domains.3、The Sobolev-like Hilbert space of the solutions of the second order degenerate-elliptic partial differential equation (orthogonal Poisson equation) object of this study and the associated topology were examined. These results were reported in N Sato and Z Yoshida 2019 J. Phys. A: Math. Theor. 52 355202. Here, it is found that a non-vanishing helicity compensates the broken ellipticity.4、The existence of Beltrami operators in dimensions higher than 3 was shown. Analytic examples were given.
本研究的目的是阐述受不可积拓扑约束的机械系统的统计理论,并创建实现这一目标所需的数学对象、概念和方法。结果表明:1、理想体系呈现泊松结构。然而,非理想系统的代数结构是一个开放的问题。在这里,我们证明了描述非正则哈密顿系统中扩散过程的福克-普朗克方程呈现出一种度规结构,即生成与能量守恒和熵增长热力学原理一致的方程的代数形式。2、拓扑约束力学系统的统计性质可以与理想欧拉方程驻定解的几何性质有关。在这里,我们研究了不具有连续欧氏对称且具有非零压力梯度的欧拉方程定常解的存在性,并在有界域上给出了光滑的解析例子。3、考察了本文研究对象二阶退化椭圆型偏微分方程解的类Sobolv-like Hilbert空间及其相应的拓扑结构。这些结果发表在N Sato和Z Yoshida 2019 J.Phys上。答:数学。西奥。52 355202。4、证明了高维Beltrami算子的存在。文中给出了分析实例。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Local Clebsch parametrization of Beltrami equilibria
Beltrami 平衡的局部 Clebsch 参数化
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤直木;山田道夫;吉田善章
  • 通讯作者:
    吉田善章
Beltrami operators and their application to constrained diffusion in Beltrami fields
Beltrami算子及其在Beltrami油田约束扩散中的应用
Google Scholar Profile
谷歌学术档案
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hamiltonian and non-Hamiltonian reductions of conservative dynamics: structures created by degenerate, singular, and finite helicity field-tensors
保守动力学的哈密尔顿和非哈密尔顿约简:由简并、奇异和有限螺旋度场张量创建的结构
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoki Sato;Michio Yamada;and Zensho Yoshida;N. Sato and Z. Yoshida
  • 通讯作者:
    N. Sato and Z. Yoshida
Singular and asymmetric Beltrami field solutions of the ideal MHD equations
理想 MHD 方程的奇异和非对称贝尔特拉米场解
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤直木;山田道夫;吉田善章
  • 通讯作者:
    吉田善章
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

佐藤 直木其他文献

佐藤 直木的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('佐藤 直木', 18)}}的其他基金

Next Generation Fusion Reactor Design: Existence and Symmetry of Magnetofluidostatic Equilibria in Bounded Domains
下一代聚变反应堆设计:有界域中磁流体静力平衡的存在性和对称性
  • 批准号:
    21K13851
  • 财政年份:
    2021
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Non-Equilibrium Statistical Mechanics with Topological Constraints: Thermodynamics and Entropy Production of Self-Organized Turbulence
具有拓扑约束的非平衡统计力学:自组织湍流的热力学和熵产生
  • 批准号:
    16J01486
  • 财政年份:
    2016
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Analysis of Singularity Formation in Three-Dimensional Euler Equations and Search for Potential Singularities in Navier-Stokes Equations
三维欧拉方程奇异性形成分析及纳维-斯托克斯方程潜在奇异性搜索
  • 批准号:
    2205590
  • 财政年份:
    2022
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Continuing Grant
A vorticity preserving finite element method for the compressible Euler equations on unstructured grids
非结构网格上可压缩欧拉方程的保涡有限元法
  • 批准号:
    429491391
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Fellowships
A Computer-Assisted Analysis Framework for Studying Finite Time Singularities of the 3D Euler Equations and Related Models
用于研究 3D 欧拉方程及相关模型的有限时间奇异性的计算机辅助分析框架
  • 批准号:
    1907977
  • 财政年份:
    2019
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
Well-posedness and stability for relativistic Euler equations with free boundaries
具有自由边界的相对论欧拉方程的适定性和稳定性
  • 批准号:
    EP/N016777/1
  • 财政年份:
    2016
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Grant
Non- and Semiparametric Techniques for Euler Equations
欧拉方程的非参数和半参数技术
  • 批准号:
    235833760
  • 财政年份:
    2013
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Research Grants
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
  • 批准号:
    371946-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
3D incompressible Euler equations: finite time singularities and Onsager's conjecture
3D 不可压缩欧拉方程:有限时间奇点和 Onsager 猜想
  • 批准号:
    371946-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Discovery Grants Program - Individual
The Isentropic Euler Equations and Optimal Transport
等熵欧拉方程和最优输运
  • 批准号:
    1101423
  • 财政年份:
    2011
  • 资助金额:
    $ 2.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了