Hyperbolic structures on manifolds and their deformations
流形上的双曲结构及其变形
基本信息
- 批准号:15540069
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main purpose of this research was to study deformations of a 3-dimensional hyperbolic cone manifold M with non-empty singular set. The head investigator Fujii and the investigator Ochiai constructed an algorithm for solving ordinary differential equations of Fuchsian type which describe deformations of M. This algorithm was reported in the journal, Interdisciplinary Information Sciences 9(2003). Fujii found some relation between the degeneration of hyperbolic structures on a hyperbolic knot and some rational points of an elliptic curve. This result was reported in the journal, J.Math.Kyoto Univ.45(2005). Fujii succeeded in drawing such a rational point on the modular curve of the elliptic curve. This result was reported in the conference, "Riemann Surfaces and Discontinuous Groups" at Tokyo Institute of Technology in December 2004. Furthermore, Fujii found the possibility that these rational points are located on some circle which constitute the boundary of some fundamental region of the modular curve. This result was reported at the conference, "Topology and Computer 2005", at Osaka Sangyo University in November 2005.The investigator Ue proved that the Fukumoto-Furuta invariant for Seifert 3-manifolds coincides with the Neumann-Siebenmann invariant, and also proved its spin rational homology cobordism invariance. Ue obtained the conditions for Seifert 3-manifolds to be obtained by Dehn surgery on knots in the 3-sphere. The investigator Saito succeeded to give a concrete description of admissible representations on non-Archimedes local fields in terms of intertwining operators.
本研究的主要目的是研究具有非空奇异集的三维双曲锥流形M的变形。首席研究员Fujii和研究员Ochiai构建了一个求解Fuchsian型常微分方程组的算法,该算法描述了M的变形。该算法发表在《跨学科信息科学》杂志9(2003)上。Fujii发现了双曲纽结上双曲结构的退化与椭圆曲线上的一些有理点之间的某种联系。这一结果发表在《数学杂志》上。京都大学,45(2005)。藤井成功地在椭圆曲线的模曲线上画出了这样一个有理点。这一结果发表在2004年12月在东京工业大学举行的“黎曼表面和不连续群”会议上。此外,Fujii发现这些有理点可能位于某个圆上,该圆构成了模曲线的某个基本区域的边界。这一结果于2005年11月在大阪产业大学举行的“拓扑学与计算机2005”会议上发表。UE证明了Seifert三维流形上的Fukumoto-Furuta不变量与Neumann-Siebenmann不变量重合,并证明了它的自旋有理同调协边不变性。得到了Seifert三维流形通过对三维球面上的纽结进行Dehn运算而得到的条件。调查者Saito成功地给出了非阿基米德局部场上的可容许表示的交织算子的具体描述。
项目成果
期刊论文数量(46)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Deformations of hyperbolic cone-manifolds and the confluence of singular points of ordinary differential equations of Fuchsian type
双曲锥流形的变形与Fuchsian型常微分方程的奇点汇合
- DOI:
- 发表时间:2003
- 期刊:
- 影响因子:0
- 作者:M.Fujii;H.Ochiai;Hiroshi Saito;Michihiko Fujii
- 通讯作者:Michihiko Fujii
Degeneration of hyperbolic structures on the figure-eight knot complement and points of finite order on an elliptic curve
椭圆曲线上八字结补和有限阶点上双曲结构的退化
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Michihiko Fujii
- 通讯作者:Michihiko Fujii
An integral lift of the Rochlin inuariant of Spherical 3-monifolds and finite surgery
球形 3-monifold 的 Rochlin inuariant 的整体提升和有限手术
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:M.Fujii;H.Ochiai;Hiroshi Saito;Masaaki Ue
- 通讯作者:Masaaki Ue
Michiko Fujii: "Deformations of hyperbolic cone-manifolds and the confluence of singular points of ordinary differential equations of Fachsion type"Surikaisekiken Kyusho Kokyuroku. 1329. 102-108 (2003)
藤井道子:“双曲锥流形的变形和 Fachsion 型常微分方程的奇点汇合”Surikaisekiken Kyusho Kokyuroku。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Taro Asuke: "Residue of the Bott class and an application to the Futaki invariant"Asian Journal of Mathematics. 7・2. 239-268 (2003)
浅助太郎:“Bott 类的残差及其对二木不变量的应用”《亚洲数学杂志》7・2(2003 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FUJII Michihiko其他文献
FUJII Michihiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FUJII Michihiko', 18)}}的其他基金
Quantitative evaluation of drought resistance of NERICA and Asian rice by stomatal response and photosynthetic activity
通过气孔响应和光合活性定量评价NERICA和亚洲水稻的抗旱性
- 批准号:
19K05993 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of the molecular mechanism for generation of reactive oxygen species and its application.
活性氧产生的分子机制分析及其应用。
- 批准号:
24580145 - 财政年份:2012
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
I dentification and characterization of the genes involved in generation or quenching of reactive oxygen species
I 参与活性氧产生或猝灭的基因的鉴定和表征
- 批准号:
21580115 - 财政年份:2009
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deformation spaces of discrete groups and hyperbolic structures
离散群和双曲结构的变形空间
- 批准号:
20540074 - 财政年份:2008
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative evaluation of differences in cultivar and fertilization to drought resistance of rice by stomata and soil water changes
利用气孔和土壤水分变化定量评价品种和施肥差异对水稻抗旱性的影响
- 批准号:
14560010 - 财政年份:2002
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Relation between hyperbolic structure of partially hyperbolic systems and ergodic limit theorems
部分双曲系统的双曲结构与遍历极限定理之间的关系
- 批准号:
23740136 - 财政年份:2011
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Young Scientists (B)














{{item.name}}会员




