Direct and Inverse Scattering Problems in Near-Field Optics Modeling

近场光学建模中的正散射和逆散射问题

基本信息

  • 批准号:
    0914595
  • 负责人:
  • 金额:
    $ 8.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2012-07-31
  • 项目状态:
    已结题

项目摘要

The research objective of this proposal is to examine mathematical issues and develop computational methods for solving important classes of direct and inverse scattering problems that arise in near-field optics modeling. The approach is to treat first the direct scattering problem and then the inverse scattering problem, and increase the complexity of the modeled system as far as possible. The proposed research concerns the following topics: (1) based on a global model for scanning tunneling microscopy, develop an adaptive coupling of the finite element and boundary integral method with error control by an a-posteriori error estimate to solve the direct problem; (2) extend the adaptive coupling of the finite element and boundary integral method to the vector theory of electromagnetic scattering; (3) develop an adaptive treecode algorithm to accelerate the boundary integral evaluations and thus to provide more efficient direct solvers; (4) develop a novel continuation method to solve the inverse problem at a fixed wavenumber. The proposed research will result in a suite of nice modeling and computational techniques, suitable for qualitative and quantitative study of various experimental configurations innear-field optical systems. Particularly, these techniques will contribute towards better understandings of the complex physical and mathematical problems in near-field optics, and provide valuable information for industry to design and fabricate new optical devices.Near-field optics has developed dramatically in recent years as an effective approach to breaking the diffraction limit and obtaining images with subwavelength resolution, which leads to vast applications in modern science and technology, including biology, chemistry, materials science, and information storage. Guided by the increasingly accurate and realistic numerical simulations, the significant advances of the near-field optical microscopies have led to integration and miniaturization of optical devices, and many original and reproducible measurements in the vicinity of complex lithographically designed nanostructures. Reciprocally, the practical applications and scientific developments have driven the need for rigorous mathematical models and analysis to describe the scattering of complicated structures, and to accurately compute electromagnetic vector fields and thus to predict the performance of a given structure in near-field and nano optics, as well as to carry out optimal design of new structures. The research lies at the interface of mathematics, physics, engineering, and materials science. It has significant potential for advancing the frontiers of applied and computational mathematics, and for evolving new mathematics and science.
该提案的研究目标是研究数学问题,并开发计算方法,用于解决近场光学建模中出现的重要类别的直接和逆散射问题。该方法是先处理正散射问题,再处理逆散射问题,尽可能增加建模系统的复杂性。本文的主要工作包括:(1)基于扫描隧道显微镜的全局模型,提出了一种有限元-边界积分自适应耦合方法,并通过后验误差估计进行误差控制,以求解正问题:(2)将有限元-边界积分自适应耦合方法推广到电磁散射的矢量理论;(3)发展一种自适应树码算法,以加速边界积分的计算,从而提供更有效的直接求解器:(4)发展一种新的连续方法,以解决固定波数下的反问题。该研究将为近场光学系统中各种实验结构的定性和定量研究提供一套良好的建模和计算技术。近场光学是突破衍射极限、获得亚波长分辨率图像的有效途径,在现代科学技术中有着广泛的应用前景。包括生物学、化学、材料科学和信息存储。在日益准确和逼真的数值模拟的指导下,近场光学显微镜的重大进展导致了光学器件的集成化和小型化,以及复杂光刻设计纳米结构附近的许多原始和可重复的测量。反过来,实际应用和科学发展已经驱动了对严格的数学模型和分析的需求,以描述复杂结构的散射,并精确计算电磁矢量场,从而预测给定结构在近场和纳米光学中的性能,以及进行新结构的优化设计。该研究处于数学,物理,工程和材料科学的界面。它在推进应用数学和计算数学的前沿以及发展新的数学和科学方面具有巨大的潜力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peijun Li其他文献

Convergence of the PML solution for elastic wave scattering by biperiodic structures
双周期结构弹性波散射 PML 解的收敛性
  • DOI:
    10.4310/cms.2018.v16.n4.a4
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Xue Jiang;Peijun Li;Junliang Lv;Weiying Zheng
  • 通讯作者:
    Weiying Zheng
Generation of sexually dimorphic limbic system neuronal populations from Dbx1+ embryonic progenitor pools
从 Dbx1 胚胎祖细胞库中生成性二态性边缘系统神经元群
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    江角重行;Yasmin Kamal;Katie Sokolowski;平田務;Peijun Li;Alessandra Pierani;玉巻伸章;Molly Huntsman;Nirao Shah and Joshua G. Corbin1
  • 通讯作者:
    Nirao Shah and Joshua G. Corbin1
Electromagnetic field enhancement in a subwavelength rectangular open cavity
亚波长矩形开腔中的电磁场增强
  • DOI:
    10.1007/s42985-021-00108-5
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yixian Gao;Peijun Li;Xiaokai Yuan
  • 通讯作者:
    Xiaokai Yuan
Workshop on Inverse Problems in Scattering and Imaging
散射与成像反问题研讨会
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peijun Li;Jie Shen;Plamen Stefanov
  • 通讯作者:
    Plamen Stefanov
The shift-invariant discrete wavelet transform and application to speech waveform analysis.
平移不变离散小波变换及其在语音波形分析中的应用。

Peijun Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peijun Li', 18)}}的其他基金

Direct and Inverse Scattering Problems in Elastic Waves: Analysis and Computation
弹性波中的正向和逆向散射问题:分析与计算
  • 批准号:
    1912704
  • 财政年份:
    2019
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
CAREER: Direct and Inverse Scattering Problems for Wave Propagation in Complex and Random Environments
职业:复杂和随机环境中波传播的直接和逆散射问题
  • 批准号:
    1151308
  • 财政年份:
    2012
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Multiscale and Stochastic Methods for Inverse Source Problems and Signal Analysis
ATD:协作研究:逆源问题和信号分析的多尺度随机方法
  • 批准号:
    1042958
  • 财政年份:
    2010
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Direct and Inverse Scattering in Biharmonic Waves: Analysis and Computation
双谐波中的正向和逆向散射:分析和计算
  • 批准号:
    2208256
  • 财政年份:
    2022
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Continuing Grant
Direct and Inverse Scattering Problems in Elastic Waves: Analysis and Computation
弹性波中的正向和逆向散射问题:分析与计算
  • 批准号:
    1912704
  • 财政年份:
    2019
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
Direct and Inverse Electromagnetic Scattering Problems for Complex Periodic Media
复杂周期性介质的正向和逆向电磁散射问题
  • 批准号:
    1812693
  • 财政年份:
    2018
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
US-China-Germany Planning Visits: Direct and Inverse Scattering Methods for Periodic Structures with Arbitrary Profiles and Defects
美中德规划访问:具有任意轮廓和缺陷的周期性结构的直接和逆散射方法
  • 批准号:
    1427665
  • 财政年份:
    2014
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
CAREER: Direct and Inverse Scattering Problems for Wave Propagation in Complex and Random Environments
职业:复杂和随机环境中波传播的直接和逆散射问题
  • 批准号:
    1151308
  • 财政年份:
    2012
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
Direct and inverse scattering problems for nonlinear dispersive equations with potential
具有势的非线性色散方程的正散射和逆散射问题
  • 批准号:
    22740082
  • 财政年份:
    2010
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Collaborative Research: Foundations of Solving Large Direct and Inverse Scattering Problems --- Algorithm Analysis and System Support
协作研究:解决大型正散射和逆散射问题的基础——算法分析和系统支持
  • 批准号:
    0514085
  • 财政年份:
    2005
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Solving Large Direct and Inverse Scattering Problems - Algorithm Analysis and System Support
协作研究:解决大型正散射和逆散射问题的基础——算法分析和系统支持
  • 批准号:
    0514078
  • 财政年份:
    2005
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Solving Large Direct and Inverse Scattering Problems --- Algorithm Analysis and System Support
协作研究:解决大型正散射和逆散射问题的基础——算法分析和系统支持
  • 批准号:
    0613282
  • 财政年份:
    2005
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Standard Grant
Mathematical Sciences: An Optimization Approach to Some Problems in Direct and Inverse Scattering
数学科学:正散射和逆散射中某些问题的优化方法
  • 批准号:
    8811134
  • 财政年份:
    1988
  • 资助金额:
    $ 8.49万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了