CAREER: Direct and Inverse Scattering Problems for Wave Propagation in Complex and Random Environments
职业:复杂和随机环境中波传播的直接和逆散射问题
基本信息
- 批准号:1151308
- 负责人:
- 金额:$ 43.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In scattering theory, due to the complexity of material properties and uncertainty in physical models and parameters, precise modeling and accurate computing present challenging and significant mathematical and computational questions. The PI proposes to develop mathematical models, examine mathematical issues, and design computational methods for new and important classes of direct and inverse problems that arise from the acoustic and electromagnetic wave propagation in complex and random environments. The mathematical modeling techniques and computational methods developed in this project address several key scientific challenges in applied and computational mathematics, which include: (1) multi-scale modeling and computation of the wave propagation in a heterogeneous medium; (2) computational stochastic direct and inverse scattering problems; (3) numerical solution of Maxwell's equations and well-posedness of associated models; (4) global uniqueness, local stability, and numerical solution of the ill-posed inverse scattering problems. The educational plan is to foster greater awareness of the broad and important applications of mathematics so as to attract more students in pursuing a major, a minor, or a graduate degree in mathematics. The proposed education activities include: (1) undergraduate and graduate courses and curriculum development; (2) mentoring of undergraduate, graduate, and postdoc research; (3) organizing summer schools, seminars, and workshops. The dramatic growth of computational capability and the development of fast algorithms have transformed the methodology for scientific investigation and industrial applications in the field of scattering theory. Reciprocally, the practical applications and scientific developments have driven the need for more sophisticated mathematical models and numerical algorithms to describe the scattering of complicated structures, and to accurately compute acoustic and electromagnetic fields and thus to predict the performance of a given structure, as well as to carry out optimal design of new structures. The proposed computational models and tools are highly promising for qualitative and quantitative study of the complex physical and mathematical problems in optics and electromagnetics, and provide an inexpensive and easily controllable virtual prototype of the structures in the design and fabrication of optical and electromagnetic devices. The research is multidisciplinary by nature and lies at the interface of mathematics, physics, engineering, and materials sciences. In addition, it has significant potential to advance the frontiers of applied and computational mathematics, and even to have impact on other branches of science.
在散射理论中,由于材料性质的复杂性以及物理模型和参数的不确定性,精确建模和精确计算提出了具有挑战性和重要性的数学和计算问题。PI建议开发数学模型,研究数学问题,并为复杂和随机环境中的声波和电磁波传播所产生的新的和重要的正问题和逆问题设计计算方法。本项目所发展的数学建模技术和计算方法解决了应用和计算数学中的几个关键科学挑战,包括:(1)非均匀介质中波传播的多尺度建模和计算;(2)计算随机正散射和逆散射问题;(3)麦克斯韦方程的数值解和相关模型的适定性;(4)不适定逆散射问题的全局唯一性、局部稳定性和数值解。教育计划是为了提高人们对数学广泛而重要的应用的认识,以吸引更多的学生攻读数学专业,辅修专业或研究生学位。拟议的教育活动包括:(1)本科生和研究生课程和课程开发;(2)指导本科生、研究生和博士后研究;(3)组织暑期学校、研讨会和讲习班。计算能力的急剧增长和快速算法的发展已经改变了散射理论领域的科学研究和工业应用的方法。相应地,实际应用和科学发展已经驱动了对更复杂的数学模型和数值算法的需求,以描述复杂结构的散射,并精确地计算声场和电磁场,从而预测给定结构的性能,以及进行新结构的优化设计。所提出的计算模型和工具是非常有前途的定性和定量研究的复杂的物理和数学问题的光学和电磁学,并提供了一个廉价的和易于控制的虚拟原型的结构的设计和制造的光学和电磁器件。该研究本质上是多学科的,处于数学、物理、工程和材料科学的交叉点。此外,它具有推进应用数学和计算数学前沿的巨大潜力,甚至对其他科学分支产生影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peijun Li其他文献
Convergence of the PML solution for elastic wave scattering by biperiodic structures
双周期结构弹性波散射 PML 解的收敛性
- DOI:
10.4310/cms.2018.v16.n4.a4 - 发表时间:
2018 - 期刊:
- 影响因子:1
- 作者:
Xue Jiang;Peijun Li;Junliang Lv;Weiying Zheng - 通讯作者:
Weiying Zheng
Generation of sexually dimorphic limbic system neuronal populations from Dbx1+ embryonic progenitor pools
从 Dbx1 胚胎祖细胞库中生成性二态性边缘系统神经元群
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
江角重行;Yasmin Kamal;Katie Sokolowski;平田務;Peijun Li;Alessandra Pierani;玉巻伸章;Molly Huntsman;Nirao Shah and Joshua G. Corbin1 - 通讯作者:
Nirao Shah and Joshua G. Corbin1
Electromagnetic field enhancement in a subwavelength rectangular open cavity
亚波长矩形开腔中的电磁场增强
- DOI:
10.1007/s42985-021-00108-5 - 发表时间:
2017-11 - 期刊:
- 影响因子:0
- 作者:
Yixian Gao;Peijun Li;Xiaokai Yuan - 通讯作者:
Xiaokai Yuan
Workshop on Inverse Problems in Scattering and Imaging
散射与成像反问题研讨会
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Peijun Li;Jie Shen;Plamen Stefanov - 通讯作者:
Plamen Stefanov
The shift-invariant discrete wavelet transform and application to speech waveform analysis.
平移不变离散小波变换及其在语音波形分析中的应用。
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:2.4
- 作者:
Jörg Enders;Weihua Geng;Peijun Li;Michael Frazier;D. Scholl - 通讯作者:
D. Scholl
Peijun Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peijun Li', 18)}}的其他基金
Direct and Inverse Scattering Problems in Elastic Waves: Analysis and Computation
弹性波中的正向和逆向散射问题:分析与计算
- 批准号:
1912704 - 财政年份:2019
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Multiscale and Stochastic Methods for Inverse Source Problems and Signal Analysis
ATD:协作研究:逆源问题和信号分析的多尺度随机方法
- 批准号:
1042958 - 财政年份:2010
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
Direct and Inverse Scattering Problems in Near-Field Optics Modeling
近场光学建模中的正散射和逆散射问题
- 批准号:
0914595 - 财政年份:2009
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
相似国自然基金
基于 Direct RNA sequencing 的 RNA 甲基化介导贻贝天然免疫调控的表观遗传机制研究
- 批准号:LR22D060002
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
- 批准号:61671111
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
相似海外基金
LEAPS-MPS: Direct methods for data rich inverse problems
LEAPS-MPS:数据丰富的反问题的直接方法
- 批准号:
2213493 - 财政年份:2022
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
Direct and Inverse Scattering in Biharmonic Waves: Analysis and Computation
双谐波中的正向和逆向散射:分析和计算
- 批准号:
2208256 - 财政年份:2022
- 资助金额:
$ 43.23万 - 项目类别:
Continuing Grant
Direct and Inverse Scattering Problems in Elastic Waves: Analysis and Computation
弹性波中的正向和逆向散射问题:分析与计算
- 批准号:
1912704 - 财政年份:2019
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
Direct and Inverse Electromagnetic Scattering Problems for Complex Periodic Media
复杂周期性介质的正向和逆向电磁散射问题
- 批准号:
1812693 - 财政年份:2018
- 资助金额:
$ 43.23万 - 项目类别:
Standard Grant
Direct and inverse spin orbit torques
正向和反向自旋轨道力矩
- 批准号:
387161541 - 财政年份:2017
- 资助金额:
$ 43.23万 - 项目类别:
Research Grants
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2017
- 资助金额:
$ 43.23万 - 项目类别:
Discovery Grants Program - Individual
Direct and Inverse Problems for Cardinality Questions in Additive Combinatorics
加法组合中基数问题的正问题和反问题
- 批准号:
1723016 - 财政年份:2016
- 资助金额:
$ 43.23万 - 项目类别:
Continuing Grant
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2016
- 资助金额:
$ 43.23万 - 项目类别:
Discovery Grants Program - Individual
Direct and inverse approximation for finite element solutions of the p and h-p versions and applications to three-dimensional propblem, nonlinear problems and Kirchhoff plate problem.
p 和 h-p 版本的有限元解的直接和逆近似以及在三维问题、非线性问题和基尔霍夫板问题中的应用。
- 批准号:
RGPIN-2014-04642 - 财政年份:2015
- 资助金额:
$ 43.23万 - 项目类别:
Discovery Grants Program - Individual
Direct and Inverse Problems for Cardinality Questions in Additive Combinatorics
加法组合中基数问题的正问题和反问题
- 批准号:
1500984 - 财政年份:2015
- 资助金额:
$ 43.23万 - 项目类别:
Continuing Grant