Direct and Inverse Scattering in Biharmonic Waves: Analysis and Computation

双谐波中的正向和逆向散射:分析和计算

基本信息

  • 批准号:
    2208256
  • 负责人:
  • 金额:
    $ 25.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Scattering problems, which are concerned with the effect that an inhomogeneous medium has on an incident field, are fundamental in many scientific areas, including geophysical inspection, medical imaging, stealth technology, and nondestructive testing. As one of the key topics in modern mathematical physics, scattering problems have been widely investigated, and a large number of mathematical and numerical results are available, especially for acoustic, elastic, and electromagnetic waves. Recently, scattering problems for biharmonic waves have attracted much attention in the engineering and mathematical communities due to significant applications in thin plate elasticity, such as the design of platonic diffraction gratings and ultra-broadband elastic cloaking. The goal of this project is to address scientific challenges posed by scattering problems of the biharmonic plate wave equation. The nature of the proposed research is multidisciplinary, and the results of the proposed work will be actively shared with other researchers in mathematics, physics, engineering, and materials science. The educational plan is centered around providing interdisciplinary student training as well as developing an integrated curriculum from the undergraduate level to the graduate level. Compared with the second-order acoustic, elastic, and electromagnetic wave equations, many direct and inverse scattering problems for the fourth-order biharmonic wave equation are not well understood. This project will further the modeling, theory, and algorithmic development of the direct and inverse scattering problems of the biharmonic plate wave equation, addressing scattering in periodic structures, scattering by multiple cavities, and inverse scattering for random sources. Specifically, the principal investigator will develop effective mathematical models and examine mathematical issues for the biharmonic plate wave equation in periodic structures, design an efficient computational approach for biharmonic wave propagation in multiple cavities, and establish mathematical theory on the uniqueness and stability of the inverse problems for the stochastic biharmonic wave equation. Results of this project are intended to contribute to our understanding of complex physical and mathematical problems in the scattering theory of thin plate elasticity. The research has the potential for evolving new science and providing the industry with guidance to design and fabricate new elastic devices in thin plates.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
散射问题涉及到非均匀介质对入射场的影响,是许多科学领域的基础,包括地球物理检测、医学成像、隐身技术和无损检测。散射问题是现代数学物理中的重要课题之一,人们对散射问题进行了广泛的研究,得到了大量的数学和数值结果,特别是声波、弹性波和电磁波的散射问题。近年来,由于双谐波散射问题在弹性薄板中的重要应用,如柏拉图衍射光栅的设计和超宽带弹性隐身等,引起了工程界和数学界的广泛关注。这个项目的目标是解决双谐波板波方程的散射问题所带来的科学挑战。拟议研究的性质是多学科的,拟议工作的结果将与数学,物理,工程和材料科学的其他研究人员积极分享。教育计划围绕提供跨学科的学生培训以及开发从本科到研究生水平的综合课程。与二阶声波、弹性波和电磁波方程相比,四阶双谐波方程的正散射和逆散射问题还没有得到很好的理解。这个项目将进一步的双谐波板波方程的直接和逆散射问题的建模,理论和算法的发展,解决在周期性结构中的散射,多个腔体的散射,和随机源的逆散射。具体而言,主要研究者将开发有效的数学模型,并研究周期性结构中的双谐波板波方程的数学问题,设计多个腔中双谐波传播的有效计算方法,并建立随机双谐波方程反问题的唯一性和稳定性的数学理论。本计画的结果将有助于我们了解薄板弹性散射理论中复杂的物理与数学问题。这项研究有可能发展新的科学,并为工业界提供指导,以设计和制造新的弹性装置在薄板。这个奖项反映了NSF的法定使命,并已被认为是值得的支持,通过评估使用基金会的知识价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse Elastic Scattering for a Random Potential
  • DOI:
    10.1137/21m1430200
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianliang Li;Peijun Li;Xu Wang
  • 通讯作者:
    Jianliang Li;Peijun Li;Xu Wang
Inverse Random Potential Scattering for Elastic Waves
  • DOI:
    10.1137/22m1497183
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jianliang Li;Peijun Li;Xu Wang
  • 通讯作者:
    Jianliang Li;Peijun Li;Xu Wang
An Adaptive Finite Element DtN Method for Maxwell's Equations
  • DOI:
    10.4208/eajam.2022-289
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Bao;Mingming Zhang;Xue Jiang;Peijun Li;Xiaokai Yuan
  • 通讯作者:
    G. Bao;Mingming Zhang;Xue Jiang;Peijun Li;Xiaokai Yuan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Isaac Harris其他文献

Reconstruction of extended regions in EIT with a generalized Robin transmission condition
用广义 Robin 传输条件重建 EIT 中的扩展区域
Metal-Optic Nanophotonic Modulators in Standard CMOS Technology
标准 CMOS 技术中的金属光学纳米光子调制器
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Elkabbash;Sivan Trajtenberg‐Mills;Isaac Harris;S. Bandyopadhyay;Mohamed I. Ibrahim;Archer Wang;Xibi Chen;Cole J. Brabec;Hasan Z. Yildiz;Ruonan Han;Dirk Englund
  • 通讯作者:
    Dirk Englund
A wireless terahertz cryogenic interconnect that minimizes heat-to-information transfer
一种使热到信息传输最小化的无线太赫兹低温互连
  • DOI:
    10.1038/s41928-025-01355-9
  • 发表时间:
    2025-03-10
  • 期刊:
  • 影响因子:
    40.900
  • 作者:
    Jinchen Wang;Isaac Harris;Mohamed Ibrahim;Dirk Englund;Ruonan Han
  • 通讯作者:
    Ruonan Han

Isaac Harris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Isaac Harris', 18)}}的其他基金

New Sampling Algorithms and Inverse Spectral Methods in Scattering
散射中的新采样算法和逆谱方法
  • 批准号:
    2107891
  • 财政年份:
    2021
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant

相似国自然基金

新型简化Inverse Lax-Wendroff方法的发展与应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高阶格式的Inverse Lax-Wendroff方法及其稳定性分析
  • 批准号:
    11801143
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Direct and Inverse Scattering Problems in Elastic Waves: Analysis and Computation
弹性波中的正向和逆向散射问题:分析与计算
  • 批准号:
    1912704
  • 财政年份:
    2019
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Direct and Inverse Electromagnetic Scattering Problems for Complex Periodic Media
复杂周期性介质的正向和逆向电磁散射问题
  • 批准号:
    1812693
  • 财政年份:
    2018
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
US-China-Germany Planning Visits: Direct and Inverse Scattering Methods for Periodic Structures with Arbitrary Profiles and Defects
美中德规划访问:具有任意轮廓和缺陷的周期性结构的直接和逆散射方法
  • 批准号:
    1427665
  • 财政年份:
    2014
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
CAREER: Direct and Inverse Scattering Problems for Wave Propagation in Complex and Random Environments
职业:复杂和随机环境中波传播的直接和逆散射问题
  • 批准号:
    1151308
  • 财政年份:
    2012
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Direct and inverse scattering problems for nonlinear dispersive equations with potential
具有势的非线性色散方程的正散射和逆散射问题
  • 批准号:
    22740082
  • 财政年份:
    2010
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Direct and Inverse Scattering Problems in Near-Field Optics Modeling
近场光学建模中的正散射和逆散射问题
  • 批准号:
    0914595
  • 财政年份:
    2009
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Solving Large Direct and Inverse Scattering Problems --- Algorithm Analysis and System Support
协作研究:解决大型正散射和逆散射问题的基础——算法分析和系统支持
  • 批准号:
    0514085
  • 财政年份:
    2005
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Solving Large Direct and Inverse Scattering Problems - Algorithm Analysis and System Support
协作研究:解决大型正散射和逆散射问题的基础——算法分析和系统支持
  • 批准号:
    0514078
  • 财政年份:
    2005
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Foundations of Solving Large Direct and Inverse Scattering Problems --- Algorithm Analysis and System Support
协作研究:解决大型正散射和逆散射问题的基础——算法分析和系统支持
  • 批准号:
    0613282
  • 财政年份:
    2005
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Standard Grant
Mathematical Sciences: An Optimization Approach to Some Problems in Direct and Inverse Scattering
数学科学:正散射和逆散射中某些问题的优化方法
  • 批准号:
    8811134
  • 财政年份:
    1988
  • 资助金额:
    $ 25.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了