Rigid motion steerability for multiscale stochastic models of 3D-textures applied to soft tissue segmentation/identification in 3D-biomedical images

3D 纹理多尺度随机模型的刚性运动可操纵性应用于 3D 生物医学图像中的软组织分割/识别

基本信息

  • 批准号:
    0915242
  • 负责人:
  • 金额:
    $ 49.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Modern medicine and biology have been enormously benefited from the advancement of imaging. New devices and acquisition methods enabled the first images of viruses. Resolution levels for diagnostic imaging are now at the order of a few hundred microns and in 3D; e.g. MRI or CT scans. Despite of all these advances some information in medical images is latent and extracting it is often a tedious task. Achieving finer resolution levels does not automatically make every tissue visible to the eye of the practitioner. The expansion of the imaging frontiers not only increases grossly the volume of the available data but also makes to want to extract more information from an image. Thus, there is an ever growing demand for the development of reliable, automated or semi-automated image analysis tools. With this goal in mind the interdisciplinary group of investigators in this project aims in making theoretical and algorithmic contributions that can lead to the development of such tools.The problem motivating this project is how to identify or segment soft-tissues that are of interest to medical practitioners or biologists with high spatial accuracy in 3D-images. To our detriment, most of the time tissues of diagnostic interest have great variability, small volume, low contrast and are corrupted by non-standard noise. Based on the premise that soft-tissues are associated with 3D-textures, the investigators approach soft-tissue discrimination/identification as segmentation/identification of the 3D-textures resulting from the tissues of interest. Notable efforts have been made to solve this problem in 2D but in 3D it is practically untouched. To achieve high spatial accuracy in the segmentation/identification of 3D-textures the investigators will build novel probabilistic models for 3D-rigid motion invariant texture signatures. This will reduce or may even eliminate classification errors due to the positioning of a tissue in the 3D-space. To extract such signatures we will characterize and thoroughly study multiscale data representations that are covariant (steerable) with respect to 3D-rigid motions. A major challenge of this project is to extract 3D-rigid motion invariant texture signatures with reasonable length and adopt probabilistic models governing the classification of these signatures in a computationally manageable manner. The envisioned tools will be tested in (3D) CT-angiography scans and 3D-confocal microscopy images of pyramidal neurons. In the first case we wish to segment various soft tissues such as cardiac muscle, epicardial fat, lumen and calcium while in the second we wish to identify dendrites in a noisy background. The investigators aim in developing an algorithmic platform for soft-tissue segmentation based on novel 3D-data representations rather than a customized application. This research program requires the development of novel mathematical ideas both in mathematical analysis and in probability theory. These new mathematical concepts and methods will endow the envisioned algorithms with a unique ability native to human vision but not yet achieved in computer and robotic vision: the identification of structures and patterns independently of their position in the 3D-space. Indeed, tissues must be correctly identifiable by any automated image analysis system regardless of their position in the 3D-space or in the human body. A system with this ability will be able to circumscribe tissue boundaries with the same high accuracy in every direction in the 3D-space. This algorithmic platform can be adopted for a wide variety of imaging applications in medicine and biology, such as CT-angiography used to diagnose stenosis in coronary arteries or contrast CT for the detection of liver cancer. Detecting abnormalities in the walls of coronary arteries especially of their regions proximal to the ascending aorta will help prevent the most life-threatening infarctions and possibly monitor the treatment of the atherosclerotic plaque without the frequent use of the grossly invasive intravascular ultrasound probes. Identifying cancerous lesions in the liver at their early stages of development can significantly increase the chances of survival in this type of cancer. Capturing accurately the structure of dendrites and of their protruding attachments called spines in images acquired with 3D-confocal microscopes is a prime time goal as spines seem to hold the key of understanding the biological basis of depression and bipolar disorder.
现代医学和生物学从成像技术的进步中受益匪浅。新的设备和采集方法使第一个图像的病毒。用于诊断成像的分辨率水平现在在几百微米的数量级和3D中;例如MRI或CT扫描。尽管有这些进步,但医学图像中的一些信息是潜在的,并且提取它通常是一项繁琐的任务。实现更精细的分辨率水平不会自动使每个组织对从业者的眼睛可见。成像前沿的扩展不仅大大增加了可用数据的量,而且也使得人们想要从图像中提取更多信息。因此,对开发可靠的、自动化或半自动化的图像分析工具的需求不断增长。考虑到这一目标,本项目中的跨学科研究人员小组的目标是在理论和算法上做出贡献,从而导致此类工具的开发。激励本项目的问题是如何在3D图像中以高空间精度识别或分割医学从业者或生物学家感兴趣的软组织。对我们不利的是,大多数时间诊断感兴趣的组织具有很大的可变性、小体积、低对比度并且被非标准噪声破坏。基于软组织与3D纹理相关联的前提,研究者将软组织区分/识别作为由感兴趣组织产生的3D纹理的分割/识别。已经做出了显著的努力来解决2D中的这个问题,但在3D中,它实际上是未触及的。为了在3D纹理的分割/识别中实现高空间精度,研究人员将为3D刚性运动不变纹理签名建立新的概率模型。这将减少或甚至可以消除由于组织在3D空间中的定位而导致的分类误差。为了提取这样的签名,我们将表征和深入研究多尺度数据表示,是协变(可操纵)相对于3D刚性运动。该项目的一个主要挑战是提取具有合理长度的3D刚性运动不变纹理签名,并采用概率模型以计算可管理的方式管理这些签名的分类。设想的工具将在(3D)CT血管造影扫描和锥体神经元的3D共聚焦显微镜图像中进行测试。在第一种情况下,我们希望分割各种软组织,如心肌,心外膜脂肪,管腔和钙,而在第二种情况下,我们希望在嘈杂的背景中识别树突。 研究人员的目标是开发一种基于新颖的3D数据表示而不是定制应用程序的软组织分割算法平台。这项研究计划需要在数学分析和概率论中发展新的数学思想。这些新的数学概念和方法将赋予所设想的算法一种独特的能力,这种能力是人类视觉固有的,但在计算机和机器人视觉中还没有实现:独立于它们在3D空间中的位置来识别结构和模式。实际上,组织必须能够被任何自动图像分析系统正确识别,而不管它们在3D空间或人体中的位置如何。具有这种能力的系统将能够在3D空间中的每个方向上以相同的高精度限定组织边界。该算法平台可用于医学和生物学中的各种成像应用,例如用于诊断冠状动脉狭窄的CT血管造影或用于检测肝癌的对比CT。检测冠状动脉壁的异常,特别是其靠近升主动脉的区域的异常,将有助于防止最危及生命的梗死,并可能监测动脉粥样硬化斑块的治疗,而无需频繁使用严重侵入性血管内超声探头。在发展的早期阶段识别肝脏中的癌性病变可以显着增加这种类型癌症的生存机会。在3D共聚焦显微镜获得的图像中准确捕获树突及其突出附件(称为棘)的结构是一个首要目标,因为棘似乎是理解抑郁症和双相情感障碍生物学基础的关键。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Emanuel Papadakis其他文献

Emanuel Papadakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Emanuel Papadakis', 18)}}的其他基金

Fine-Scale Singularity Detection in Multi-Dimensional Imaging with Regular, Orientable, Symmetric, Frame Atoms with Small Support
具有规则、可定向、对称、小支撑的框架原子的多维成像中的精细奇异性检测
  • 批准号:
    1720487
  • 财政年份:
    2017
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Standard Grant
Sparse 3D-Data Representations from Compactly Supported Atoms for Rigid Motion Invariant Classification with Applications to Neuroscience Imaging
来自紧支撑原子的稀疏 3D 数据表示,用于刚性运动不变分类及其在神经科学成像中的应用
  • 批准号:
    1320910
  • 财政年份:
    2013
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Continuing Grant
Isotropic Multiresolution Analysis in Multi-Dimensions
多维度各向同性多分辨率分析
  • 批准号:
    0406748
  • 财政年份:
    2004
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Standard Grant

相似国自然基金

穴位-靶器官效应的交互调节与穴位配伍的生物学机制
  • 批准号:
    81130063
  • 批准年份:
    2011
  • 资助金额:
    260.0 万元
  • 项目类别:
    重点项目
动态整体面孔认知加工的认知机制的研究
  • 批准号:
    31070908
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于计算和存储感知的运动估计算法与结构研究
  • 批准号:
    60803013
  • 批准年份:
    2008
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
前庭内侧核内GABA参与晕动症时心血管功能失调的作用机制
  • 批准号:
    30600339
  • 批准年份:
    2006
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
运动数据的艺术化合成与编辑
  • 批准号:
    60403037
  • 批准年份:
    2004
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水下平面射流振翅运动与频率锁定现象
  • 批准号:
    10472046
  • 批准年份:
    2004
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
5-羟色胺对引发晕动症的前庭信息发挥调节作用的神经机制
  • 批准号:
    30470562
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Topological Defects and Dynamic Motion of Symmetry-breaking Tadpole Particles in Liquid Crystal Medium
合作研究:液晶介质中对称破缺蝌蚪粒子的拓扑缺陷与动态运动
  • 批准号:
    2344489
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Standard Grant
Motion Sense-free Cabin:自動走行時の快適性向上を目的とした搭乗者の移動感覚制御
无体感驾驶室:控制乘客运动感觉,提高自动驾驶舒适度
  • 批准号:
    24K02978
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: A Task-Invariant Customization Framework for Lower-Limb Exoskeletons to Assist Volitional Human Motion
职业生涯:用于辅助人类意志运动的下肢外骨骼的任务不变定制框架
  • 批准号:
    2340261
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Standard Grant
Development of a Novel EMG-Based Neural Interface for Control of Transradial Prostheses with Gripping Assistance
开发一种新型的基于肌电图的神经接口,用于通过抓取辅助控制经桡动脉假体
  • 批准号:
    10748341
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
Vision-only structure-from-motion via acoustic video for extreme underwater environment sensing
通过声学视频进行纯视觉运动结构,用于极端水下环境传感
  • 批准号:
    24K20867
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Motion-Less VRの研究:下肢を対象とした装置の開発と性能の評価
无运动 VR 研究:针对下肢的设备的开发和性能评估
  • 批准号:
    24K17244
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
  • 批准号:
    2411677
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Continuing Grant
Simplified Intravoxel Incoherent Motionモデルによる非造影足部還流評価法の開発
使用简化的 Intravoxel 不相干运动模型开发非对比足部灌注评估方法
  • 批准号:
    24K18798
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Imaging and understanding the motion and interaction of nanoparticles near surfaces
职业:成像并理解表面附近纳米颗粒的运动和相互作用
  • 批准号:
    2338466
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Continuing Grant
STTR Phase I: ActiveLens: Enabling Stationary Occupancy Detection of Passive Infrared Motion Sensors
STTR 第一阶段:ActiveLens:实现被动红外运动传感器的静止占用检测
  • 批准号:
    2341560
  • 财政年份:
    2024
  • 资助金额:
    $ 49.07万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了