CIF: Small: Towards a Control Framework for Neural Generative Modeling

CIF:小:走向神经生成建模的控制框架

基本信息

  • 批准号:
    2348624
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-03-01 至 2027-02-28
  • 项目状态:
    未结题

项目摘要

Generative machine learning are neural networks that are trained on input data so as to then generate new data with similar characteristics. In particular, generative machine learning has been used for the creation of images, and recent work has focused on diffusion-based neural networks driven by an image-to-image translation network trained to gradually remove noise. This project adopts control-theory methodologies to provide a theoretical framework for understanding diffusion-based generative machine learning. By framing the operation of diffusion models as an optimal control problem, the investigators seek to establish a foundational link to the domains of partial and stochastic differential equations with the aim to understand generative models in terms of their controllability, expressiveness, computational complexity, and robustness. In contrast to current diffusion models which rely heavily on empirical design with limited theoretical foundation, the project seeks to greatly improve training for generative networks at a reduced computational cost. Given the current widespread interest in generative models in numerous applications, the project has the potential to bridge multiple technical communities, particularly given its theoretical focus. The investigators also plan to include undergraduates in the research endeavors as well as to incorporate ethical and societal ramifications of generative machine learning in their educational activities.This project on a control framework for neural generative modeling will weave together several distinct intellectual strands in the novel context of generative modeling – namely, control of stochastic trajectories and ensembles, control of partial differential equations (PDEs), and classical theories of PDEs for multiscale image analysis. The research program is articulated around three major directions: (1) control of diffusion processes; (2) control in the space of densities; (3) control of image PDEs. The first direction will develop a first-principles framework for generative modeling by drawing on the techniques of optimal control of diffusion processes. The second direction will build on this framework to phrase generative modeling as a control problem in the space of probability densities, potentially bypassing explicit use of stochastic differential equations. This will connect the setting of generative modeling to the problem of optimal control of PDEs of Liouville type that describe the evolution of probability densities under the action of smooth flows. Finally, the third direction will expand the scope of this inquiry to the more general class of PDEs arising from the axioms of multiscale analysis in the context of image processing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通用机器学习是对输入数据训练的神经元网络,以便生成具有相似特征的新数据。特别是,通用机器学习已用于创建图像,最近的工作集中在基于扩散的神经元网络上,该网络是由图像到图像转换网络驱动的,该网络训练有素,该网络逐渐消除了噪声。该项目采用控制理论的方法来提供理论框架,以理解基于扩散的遗传机器学习。通过将差异模型作为最佳控制问题的操作构建,研究人员试图建立与部分和随机微分方程域的基础联系,目的是从其可控性,表现力,计算复杂性和鲁棒性方面理解通用模型。与当前的差异模型相反,这些模型在很大程度上依赖于具有有限的理论基础的经验设计,该项目旨在以降低的计算成本来对通用网络进行大量改进培训。鉴于当前对众多应用中通用模型的宽度兴趣,该项目有可能弥合多个技术社区,尤其是鉴于其理论重点。 The investigators also plan to include undergraduates in the research endeavors as well as to incorporate ethical and social ramifications of generic machine learning in their educational activities.This project on a control framework for neuronal generic modeling will weave together several distinct intelligent strands in the novel context of generic modeling – namely, control of stochastic trajectories and ensembles, control of partial differential equations (PDEs), and classical theories用于多尺度图像分析的PDE。该研究计划围绕三个主要方向阐明:(1)控制差异过程; (2)在密度的空间中控制; (3)对图像PDE的控制。第一个方向将通过借鉴对差异过程的最佳控制技术来开发通用建模的第一原理框架。第二个方向将基于此框架,将通用建模作为概率密度空间中的控制问题,可能绕开随机微分方程的明确使用。这将连接通用建模的设置与liouville类型PDE的最佳控制问题,该问题描述了在光滑流动的作用下概率密度的演变。最后,第三个方向将在图像处理的背景下,由多尺度分析的公理产生的更通用的PDE扩大范围。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估通过评估而被认为是珍贵的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maxim Raginsky其他文献

On the information capacity of Gaussian channels under small peak power constraints
A variational approach to sampling in diffusion processes
扩散过程中的变分采样方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maxim Raginsky
  • 通讯作者:
    Maxim Raginsky
Biological Autonomy
生物自主性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maxim Raginsky
  • 通讯作者:
    Maxim Raginsky

Maxim Raginsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maxim Raginsky', 18)}}的其他基金

Collaborative Research: CIF: Medium: Analysis and Geometry of Neural Dynamical Systems
合作研究:CIF:媒介:神经动力系统的分析和几何
  • 批准号:
    2106358
  • 财政年份:
    2021
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Illinois Institute for Data Science and Dynamical Systems (iDS2)
HDR TRIPODS:伊利诺伊州数据科学与动力系统研究所 (iDS2)
  • 批准号:
    1934986
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
I/UCRC: Phase I: Center for Advanced Electronics through Machine Learning (CAEML)
I/UCRC:第一阶段:机器学习先进电子学中心 (CAEML)
  • 批准号:
    1624811
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CIF: Small: Learning Signal Representations for Multiple Inference Tasks
CIF:小:学习多个推理任务的信号表示
  • 批准号:
    1527388
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: An Information-Theoretic Approach to Communication-Constrained Statistical Learning
职业:通信受限统计学习的信息论方法
  • 批准号:
    1254041
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CIF: Medium:Collaborative Research: Nonasymptotic Analysis of Feature-Rich Decision Problems with Applications to Computer Vision
CIF:媒介:协作研究:特征丰富的决策问题的非渐近分析及其在计算机视觉中的应用
  • 批准号:
    1302438
  • 财政年份:
    2013
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
  • 批准号:
    1261120
  • 财政年份:
    2012
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
  • 批准号:
    1017564
  • 财政年份:
    2010
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

TIM-4调控小胶质细胞向吞噬型转化促进蛛网膜下腔出血后血液清除的作用及机制
  • 批准号:
    82301485
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EGFR突变的肺腺癌向小细胞肺癌转变的分子机制及干预策略
  • 批准号:
    82341002
  • 批准年份:
    2023
  • 资助金额:
    200 万元
  • 项目类别:
    专项基金项目
巨噬细胞A20调控小管上皮细胞胞葬在AKI向CKD转变中的作用机制探讨
  • 批准号:
    82270728
  • 批准年份:
    2022
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
小胶质细胞外泌体调控卒中后星形胶质细胞亚型向神经干细胞转化的机制研究
  • 批准号:
    82271320
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
小尺度场向电流时空分布特征及与沉降粒子关系的研究
  • 批准号:
    42174191
  • 批准年份:
    2021
  • 资助金额:
    59.00 万元
  • 项目类别:
    面上项目

相似海外基金

CIF:Small: Towards Information Content of Dynamic Structures
CIF:Small:走向动态结构的信息内容
  • 批准号:
    2006440
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CIF: Small: Towards Robust Statistical Learning: Theory and Algorithms
CIF:小:迈向稳健的统计学习:理论和算法
  • 批准号:
    1908905
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CIF:Small:Towards practical coded caching
CIF:小:走向实用的编码缓存
  • 批准号:
    1718470
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research:Towards more Secure Systems: Uniformization for Secrecy
CIF:小型:协作研究:迈向更安全的系统:保密统一化
  • 批准号:
    1527270
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CIF: Small: Towards Structural Information
CIF:小:走向结构信息
  • 批准号:
    1524312
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了