MRI: Development of an Optical Hall Effect Instrumentation for non-contact Nanostructure Electrical Characterization
MRI:开发用于非接触式纳米结构电表征的光学霍尔效应仪器
基本信息
- 批准号:0922937
- 负责人:
- 金额:$ 29.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2012-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0922937SchubertU. of Nebraska-LincolnTechnical Summary: Measurement of free charge carrier properties in complex nanostructure materials and heterostructures is becoming increasingly indispensible for understanding of fundamental and new physical phenomena in such materials. Traditional electrical Hall effect instruments are limited in their ability to probe the free charge carrier properties, particularly in operation modes which are contactless, non-invasive, non-destructive and yet capable of spatially resolving the charge carrier behavior. This project aims to develop a low-operation-cost, feasible, easy-to-use, desk-top-style, and world-unique Optical Hall effect instrumentation for the 0.1 to 50 Terahertz (THz) spectral region for studying samples within magnetic fields up to 8 T, and in the temperature range between 4 K and 300 K. The new development measures the transverse and longitudinal optical birefringence at long wavelengths due to displacements of charge location in an external magnetic field, as a function of wavelength, magnetic field direction, and strength. The Optical Hall effect instrument allows understanding of charge and spin transport properties, and will greatly advance our understanding of multiferroic tunnel structures, magnetoelectric heterostructures, ferromagnetic, and ferroelectric polymer structures, magnetic, and piezoelectric hybrid nanostructures and novel solar cell materials and devices, for example. The instrumentation will be developed at the University of Nebraska-Lincoln (UNL), and will be used in collaboration between different Universities, National Laboratories and Companies working with electrical properties of nanostructure materials and devices. The proposal will integrate the education of graduate and undergraduate students with basic research and new instrumentation development, and will leverage with NSF-MRSEC QSPIN, 2 NSF-CAREER, and NSF-DMR program activities and inter-departmental and inter-collegiate collaborations within the University of Nebraska-Lincoln. The MRI development will promote productive partnerships for instrument development between UNL, and the J. A. Woollam Co., Inc. of Lincoln, Nebraska, the world-leading manufacturer of spectroscopic ellipsometry instrumentation.Layman Summary: The motion of electrons and their positively charged counterparts - holes - in nanostructure materials is governed by new phenomena due to the confinement imposed by the nanostructure geometry and composition. Knowledge of the charge properties within such nanostructures will enable design of new materials and devices with capabilities far beyond current technology. Monitoring electron and hole motions within strong magnetic fields using polarized Terahertz and Far infrared light at frequencies up to ten thousand times faster than current desktop computer clock speed reveals their location and properties, and fundamental and new physical phenomena can be explored in such materials. Traditional methods require electrical contacts, which are difficult or simply impossible to attach to the nanostructures. The new and world-unique Optical Hall effect instrumentation employs frequencies which penetrate the nanostructures and screen their electron and hole properties without electrical contacts. Many innovations are expected from studying new multifunctional nanostructures for solar and energy restoring applications, for example. The instrumentation will be developed at the University of Nebraska-Lincoln (UNL), and will be used in collaboration between different Universities, National Laboratories and Companies working with electrical properties of nanostructure materials and devices. The proposal will integrate the education of graduate and undergraduate students with basic research and new instrumentation development, and promote productive partnerships between UNL, and the J. A. Woollam Co., Inc. of Lincoln, Nebraska, the world-leading manufacturer of spectroscopic ellipsometry instrumentation.
0922937舒伯特大学。内布拉斯加州林肯分校技术摘要:复杂纳米结构材料和异质结构中自由电荷载流子特性的测量对于理解此类材料中的基本和新物理现象变得越来越不可或缺。传统的电气霍尔效应仪器探测自由载流子特性的能力受到限制,特别是在非接触式、非侵入性、非破坏性但能够空间解析载流子行为的操作模式下。 该项目旨在开发一种运行成本低、可行、易于使用、桌面式且世界独特的光学霍尔效应仪器,适用于 0.1 至 50 太赫兹 (THz) 光谱区域,用于研究高达 8 T 的磁场和 4 K 至 300 K 温度范围内的样品。新开发的产品可测量长波长下由于位移而产生的横向和纵向光学双折射。 外部磁场中的电荷位置,作为波长、磁场方向和强度的函数。光学霍尔效应仪器可以帮助我们了解电荷和自旋输运特性,并将极大地增进我们对多铁性隧道结构、磁电异质结构、铁磁和铁电聚合物结构、磁性和压电混合纳米结构以及新型太阳能电池材料和器件的理解。该仪器将在内布拉斯加大学林肯分校 (UNL) 开发,并将在不同大学、国家实验室和研究纳米结构材料和器件电性能的公司之间合作使用。该提案将把研究生和本科生的教育与基础研究和新仪器开发结合起来,并将利用 NSF-MRSEC QSPIN、2 NSF-CAREER 和 NSF-DMR 项目活动以及内布拉斯加大学林肯分校内的跨部门和学院间合作。 MRI 的开发将促进 UNL 与内布拉斯加州林肯市的 J. A. Woollam Co., Inc. 之间在仪器开发方面富有成效的合作伙伴关系,该公司是世界领先的光谱椭偏仪仪器制造商。外行摘要:纳米结构材料中电子及其带正电荷的对应物(空穴)的运动受到纳米结构所施加的限制所产生的新现象的控制 几何和组成。了解此类纳米结构内的电荷特性将能够设计出功能远远超出当前技术的新材料和设备。使用偏振太赫兹和远红外光以比当前台式计算机时钟速度快一万倍的频率监测强磁场内的电子和空穴运动,揭示它们的位置和特性,并可以在此类材料中探索基本和新的物理现象。传统方法需要电接触,这很难或根本不可能附着到纳米结构上。世界上独一无二的新型光学霍尔效应仪器采用的频率可以穿透纳米结构并筛选其电子和空穴特性,而无需电接触。例如,研究用于太阳能和能量恢复应用的新型多功能纳米结构有望带来许多创新。该仪器将在内布拉斯加大学林肯分校 (UNL) 开发,并将在不同大学、国家实验室和研究纳米结构材料和器件电性能的公司之间合作使用。该提案将把研究生和本科生的教育与基础研究和新仪器开发相结合,并促进内布拉斯加州林肯大学与世界领先的光谱椭圆偏振仪器制造商内布拉斯加州林肯市的 J.A. Woollam Co., Inc. 之间富有成效的合作关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mathias Schubert其他文献
Erratum to: (N)Olympia in Germany? An analysis of the referendum against Munich 2022
- DOI:
10.1007/s12662-015-0391-y - 发表时间:
2015-12-04 - 期刊:
- 影响因子:1.900
- 作者:
Thomas Könecke;Mathias Schubert;Holger Preuß - 通讯作者:
Holger Preuß
‘Classical’ doping, financial doping and beyond: UEFA’s financial fair play as a policy of anti-doping
“经典”兴奋剂、金融兴奋剂及其他:欧足联将财务公平竞赛作为反兴奋剂政策
- DOI:
10.1080/19406940.2013.854824 - 发表时间:
2014 - 期刊:
- 影响因子:2.1
- 作者:
Mathias Schubert;Thomas Könecke - 通讯作者:
Thomas Könecke
Phase and microstructure investigations of boron nitride thin Phase and microstructure investigations of boron nitride thin films by spectroscopic ellipsometry in the visible and infrared films by spectroscopic ellipsometry in the visible and infrared spectral range spectral range
氮化硼薄膜的相和微观结构研究 通过光谱椭圆光度法在可见光和红外光谱范围内研究氮化硼薄膜的相和微观结构 在可见光和红外光谱范围内通过光谱椭圆光度法研究氮化硼薄膜的相和微观结构
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
E. Franke;Mathias Schubert;T. Tiwald;D. Thompson;J. Woollam - 通讯作者:
J. Woollam
The paramagnetic Lyddane-Sachs-Teller relation
顺磁 Lyddane-Sachs-Teller 关系
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Viktor Rindert;V. Darakchieva;Tapati Sarkar;Mathias Schubert - 通讯作者:
Mathias Schubert
Perceptions of professional esports players on performance-enhancing substances
- DOI:
10.1016/j.peh.2022.100236 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:
- 作者:
Mathias Schubert;Felix Eing;Thomas Könecke - 通讯作者:
Thomas Könecke
Mathias Schubert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mathias Schubert', 18)}}的其他基金
The influence of doping and annealing onto the lattice dynamics, band structure and free charge carrier properties in monoclinic gallium aluminum oxide semiconductor alloys
掺杂和退火对单斜晶系铝镓氧化物半导体合金晶格动力学、能带结构和自由载流子性能的影响
- 批准号:
1808715 - 财政年份:2018
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Effects of Polarization Fields and Surface Charge Layers on p-Type Conductivity in In(Ga)N
极化场和表面电荷层对 In(Ga)N 中 p 型电导率的影响
- 批准号:
0907475 - 财政年份:2009
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
MRI: Track 1 Development of a Combined Optical and Magnetic Resonance Spectroscopy System
MRI:光学和磁共振组合光谱系统的轨道 1 开发
- 批准号:
2320520 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Equipment: MRI: Track II Development of an Optical Spectrometer for Multimodal Linearly Polarized, Circularly Polarized, and Integrating-Sphere-Assisted Spectroscopic Measurements
设备: MRI:用于多模态线偏振、圆偏振和积分球辅助光谱测量的光谱仪的 Track II 开发
- 批准号:
2320462 - 财政年份:2023
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
MRI: Development of an Optical Super-resolution Instrument for Measuring Concentration Profiles and Diffusion Dynamics in Thin Films
MRI:开发用于测量薄膜中的浓度分布和扩散动力学的光学超分辨率仪器
- 批准号:
2215742 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
MRI: Development of Rydberg Tweezer Quantum Processor with Real-Time Optical Cavity Readout
MRI:开发具有实时光腔读出功能的里德堡镊子量子处理器
- 批准号:
2216201 - 财政年份:2022
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
MRI: Development of Telescope Arrays to Image the Optical Counterparts of Mergers within Two Seconds of Gravitational-Wave Detection and Observe Supernovae at the Time of Explosion
MRI:开发望远镜阵列,在引力波探测的两秒内对合并的光学对应物进行成像,并观察爆炸时的超新星
- 批准号:
2117236 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
MRI: Development of a Machine Learning Multimodal Ultrafast Optical Microscope
MRI:机器学习多模态超快光学显微镜的开发
- 批准号:
2117616 - 财政年份:2021
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
MRI: Development of a 50-Tesla Ultrabroadband Magneto-optical Spectroscopy System
MRI:50特斯拉超宽带磁光光谱系统的开发
- 批准号:
2019004 - 财政年份:2020
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
MRI: Development of A Magneto-Optical Spectroscopy System for Investigation of Spintronic and Quantum Materials
MRI:开发用于研究自旋电子和量子材料的磁光光谱系统
- 批准号:
2019130 - 财政年份:2020
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
MRI: Development of an Energy Loss Optical Scintillation System (ELOSS), for Heavy-Ion Particle Identification (PID) to Advance Nuclear Physics Experiments
MRI:开发能量损失光学闪烁系统 (ELOSS),用于重离子粒子识别 (PID),以推进核物理实验
- 批准号:
2017986 - 财政年份:2020
- 资助金额:
$ 29.99万 - 项目类别:
Standard Grant
Development of concurrent MRI and Optical Spectroscopy for measurement of neuronal cell biophysical/microstructural changes
开发并行 MRI 和光谱学来测量神经元细胞生物物理/微观结构变化
- 批准号:
2107513 - 财政年份:2018
- 资助金额:
$ 29.99万 - 项目类别:
Studentship














{{item.name}}会员




