Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
基本信息
- 批准号:RGPIN-2020-04424
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2020
- 资助国家:加拿大
- 起止时间:2020-01-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research aims at the development and further investigation of statistical methodology based on convex optimization, and, at the same time, its long term objectives include the creation of a mathematical toolbox for analyzing perturbations in the pertinent optimization tasks, in particular with regard to an interplay of finite- and infinite-dimensional duality, an important vehicle both for their statistical theory and computational implementations. The specific optimization problems under scrutiny are generally those of semi--infinite character: while they act in infinite-dimensional spaces, they still possess certain finite dimensional features. Proposed areas of investigation comprise the study of perturbations of convex optimization problems applied in density estimation, a continuation of the applicant work in estimation of s-concave densities via Renyi divergences; the extension of this investigation into other similar tasks, and also theoretical investigation of their possible well-posedness in the Hadamard sense and robustness aspects. A proposed outcome of this line of research are also numerical error bounds for the algorithms used in shape-constrained density estimation. The estimation methods based on Renyi divergences are further proposed to be applied also to alternative shape constraints - like the monotonicity of a resulting estimate, with an objective to reveal some yet unknown aspects of the Grenander estimator, but also in the context of mixture models, to obtain novel empirical Bayes predictors with imposed monotonicity. Another proposed topic concerns further understanding of the algorithms for nonparametric maximum likelihood estimation of the mixing probability in mixture models arising in the empirical Bayes framework; their subsequent multidimensional extensions, of cutting-plane and similar nature, are proposed to be investigated as well. This theme continues into the development of the theory of empirical Bayes methods, in particular the interplay of the estimated and "oracle" Bayes predictions, all in the context of general loss functions; the investigation of certain robustness questions in the latter context is proposed as well. The proposed research involves also the exploration of the connection of mixture models and deep learning, based on the discovery that the certain class of neural networks, convex neural networks, are analogous to mixture models; this topic simultaneously aims at the investigation of possible applications of the ideas from nonparametric maximum likelihood estimation to neural networks, and, conversely, that of certain algorithmic techniques from neural networks to the nonparametric estimation of probabilities in mixture models. The last proposed area concerns the development of structure hunting and inference strategies for technologies involving penalized regression methods promoting sparsity, with applications in the frequency analysis of time series and change-point problems.
拟议的研究旨在开发和进一步研究基于凸优化的统计方法,同时,其长期目标包括创建一个数学工具箱,用于分析相关优化任务中的扰动,特别是关于有限维和无限维对偶的相互作用,这是统计理论和计算实现的重要工具。具体的最优化问题,在审查一般是那些半无限的字符:虽然他们在无限维空间中的行为,他们仍然具有一定的有限维功能。建议的调查领域包括研究扰动的凸优化问题中应用的密度估计,继续申请人的工作估计的s-凹密度通过Renyi分歧;扩展到其他类似的任务,这一调查,并在理论上调查其可能的适定性在阿达玛意义和鲁棒性方面。这一系列研究的一个建议成果也是形状约束密度估计中使用的算法的数值误差界。基于Renyi分歧的估计方法被进一步提出,也被应用于替代形状约束-如所得到的估计的单调性,其目的是揭示Grenander估计的一些未知方面,但也在混合模型的背景下,以获得具有强加单调性的新的经验贝叶斯预测。另一个建议的主题涉及进一步理解的算法的非参数最大似然估计的混合模型中产生的经验贝叶斯框架中的混合概率,其随后的多维扩展,切割平面和类似的性质,建议进行调查。这一主题继续到经验贝叶斯方法的理论的发展,特别是相互作用的估计和“预言”贝叶斯预测,所有的背景下,一般损失函数;调查的某些鲁棒性问题,在后者的背景下,以及提出。拟议的研究还涉及探索混合模型和深度学习的联系,基于发现某类神经网络,凸神经网络,类似于混合模型;本主题同时旨在研究从非参数最大似然估计到神经网络的思想的可能应用,反之,从神经网络到混合模型中概率的非参数估计的某些算法技术。最后提出的领域涉及发展的结构狩猎和推理策略的技术,涉及惩罚回归方法,促进稀疏性,在时间序列和变点问题的频率分析中的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mizera, Ivan其他文献
QUANTILE TOMOGRAPHY: USING QUANTILES WITH MULTIVARIATE DATA
- DOI:
10.5705/ss.2010.224 - 发表时间:
2012-10-01 - 期刊:
- 影响因子:1.4
- 作者:
Kong, Linglong;Mizera, Ivan - 通讯作者:
Mizera, Ivan
Convex Optimization, Shape Constraints, Compound Decisions, and Empirical Bayes Rules
- DOI:
10.1080/01621459.2013.869224 - 发表时间:
2014-06-01 - 期刊:
- 影响因子:3.7
- 作者:
Koenker, Roger;Mizera, Ivan - 通讯作者:
Mizera, Ivan
Mizera, Ivan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mizera, Ivan', 18)}}的其他基金
Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
- 批准号:
RGPIN-2020-04424 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
- 批准号:
RGPIN-2020-04424 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization in the theory and practice of statistical estimation, prediction, and inference
统计估计、预测和推理的理论和实践中的凸优化
- 批准号:
RGPIN-2015-05062 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization in the theory and practice of statistical estimation, prediction, and inference
统计估计、预测和推理的理论和实践中的凸优化
- 批准号:
RGPIN-2015-05062 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization in the theory and practice of statistical estimation, prediction, and inference
统计估计、预测和推理的理论和实践中的凸优化
- 批准号:
RGPIN-2015-05062 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization in the theory and practice of statistical estimation, prediction, and inference
统计估计、预测和推理的理论和实践中的凸优化
- 批准号:
RGPIN-2015-05062 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Convex optimization in the theory and practice of statistical estimation, prediction, and inference
统计估计、预测和推理的理论和实践中的凸优化
- 批准号:
RGPIN-2015-05062 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Optimization theory and algorithms in functional and object-oriented data analysis: from quantitative to qualitative aspects
函数式和面向对象数据分析中的优化理论和算法:从定量到定性
- 批准号:
238598-2010 - 财政年份:2014
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Optimization theory and algorithms in functional and object-oriented data analysis: from quantitative to qualitative aspects
函数式和面向对象数据分析中的优化理论和算法:从定量到定性
- 批准号:
238598-2010 - 财政年份:2013
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Optimization theory and algorithms in functional and object-oriented data analysis: from quantitative to qualitative aspects
函数式和面向对象数据分析中的优化理论和算法:从定量到定性
- 批准号:
396103-2010 - 财政年份:2012
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
相似国自然基金
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
- 批准号:W2433169
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
Incentive and governance schenism study of corporate green washing behavior in China: Based on an integiated view of econfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
含Re、Ru先进镍基单晶高温合金中TCP相成核—生长机理的原位动态研究
- 批准号:52301178
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
NbZrTi基多主元合金中化学不均匀性对辐照行为的影响研究
- 批准号:12305290
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
眼表菌群影响糖尿病患者干眼发生的人群流行病学研究
- 批准号:82371110
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
镍基UNS N10003合金辐照位错环演化机制及其对力学性能的影响研究
- 批准号:12375280
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
CuAgSe基热电材料的结构特性与构效关系研究
- 批准号:22375214
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
A study on prototype flexible multifunctional graphene foam-based sensing grid (柔性多功能石墨烯泡沫传感网格原型研究)
- 批准号:
- 批准年份:2020
- 资助金额:20 万元
- 项目类别:
基于大数据定量研究城市化对中国季节性流感传播的影响及其机理
- 批准号:82003509
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Optimization of Neurophysiologic Biomarkers for Rehabilitation Interventions in Veterans with Chronic Psychosis
慢性精神病退伍军人康复干预的神经生理学生物标志物的优化
- 批准号:
10753415 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Mathematical Optimization of Surveillance Ages to Intercept colitis-associated Colorectal cancer (MOSAIC)
监测年龄的数学优化以拦截结肠炎相关结直肠癌 (MOSAIC)
- 批准号:
10581069 - 财政年份:2023
- 资助金额:
$ 1.31万 - 项目类别:
Model-based optimization of pain management in surgical patients
基于模型的手术患者疼痛管理优化
- 批准号:
10536063 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
- 批准号:
RGPIN-2020-04424 - 财政年份:2022
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Optimization-based statistical methods: functional estimation, sparsity, compound decisions, and deep learning
基于优化的统计方法:函数估计、稀疏性、复合决策和深度学习
- 批准号:
RGPIN-2020-04424 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Optimization and joint modeling for peptide detection by tandem mass spectrometry
串联质谱肽检测的优化和联合建模
- 批准号:
9214942 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1653339 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
- 批准号:
1834710 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Standard Grant
Optimization of Bi-Pap and PEG intervention protocols for Amyotrophic Lateral Sclerosis
肌萎缩侧索硬化症 Bi-Pap 和 PEG 干预方案的优化
- 批准号:
9169075 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Large-scale Network Modeling for Brain Dynamics: Statistical Learning and Optimization
脑动力学大规模网络建模:统计学习和优化
- 批准号:
9170649 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别: