Dynamics of Nanometer Gap Formation in Thermo-Tunneling Devices for Energy Conversion

用于能量转换的热隧道装置中纳米间隙形成的动力学

基本信息

  • 批准号:
    0927661
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-15 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

Thermo-tunneling is a term used to describe combined emission of hot electrons (thermionic emission) and tunneling of electrons through a narrow potential barrier between two surfaces (field emission). Thermo-tunneling of hot electrons across a few-nanometer gap has application to vacuum electronics and flat panel displays, and holds great potential in thermo-electric cooling and energy generation. Theoretical and experimental studies on thermo-tunneling nano-structures have shown that the heat removal efficiency of these structures could approach the theoretical limit known as Carnot efficiency. This project aims to test a new method for constructing thermo-tunneling devices by forming a very narrow (1 nanometer wide) vacuum gap across two very smooth surfaces. Unfortunately, establishment of a nanometer vacuum gap over sufficiently large areas required for practical use of thermo-tunneling devices is very challenging and so far has not been demonstrated. The goal of this proposal, therefore, is to explore and demonstrate the feasibility of creating nanometer vacuum gaps over extended areas using a dynamic equilibrium between Lorentz, Van der Waals, and electrostatic forces. The methods of modern dynamical system analysis and boundary control of distributed parameter systems will be applied to demonstrate theoretically and experimentally the feasibility of forming such gaps and to produce a new class of high-efficiency energy conversion devices. If successful, the proposed research will result in a novel nanometer gap-forming technique that can be used in solid-state cooling devices, solid-state thermoelectric generators, and high-speed vacuum electronic devices for defense (radiation hard) applications. The energy conversion efficiency of such devices approaches the thermodynamic (Carnot) limit, therefore the project could lead to tremendous energy savings in cooling and power-generation applications by replacing mechanical compressors in cooling applications, or producing a more efficient thermo-electric generators. The research will provide invaluable training opportunities for graduate students in the Applied Mathematics Interdisciplinary Program at the University of Arizona and for graduate student exchange with the world-renowned Department of Applied Mechanics at the Budapest Technical University of Technology and Economics.
热隧穿是一个术语,用于描述热电子的组合发射(电子发射)和电子穿过两个表面之间的窄势垒的隧穿(场发射)。热电子在几个纳米间隙中的热隧穿可应用于真空电子学和平板显示器,并且在热电冷却和能量产生方面具有巨大的潜力。对热隧穿纳米结构的理论和实验研究表明,这些结构的热去除效率可以接近称为卡诺效率的理论极限。该项目旨在测试一种通过在两个非常光滑的表面上形成非常窄(1纳米宽)的真空间隙来构建热隧道器件的新方法。不幸的是,在实际使用热隧穿器件所需的足够大的区域上建立纳米真空间隙是非常具有挑战性的,并且迄今为止尚未得到证明。因此,本提案的目标是探索和证明使用洛伦兹力、货车德瓦尔斯力和静电力之间的动态平衡在扩展区域上产生纳米真空间隙的可行性。现代动力系统分析和分布参数系统边界控制的方法将被应用于从理论和实验上证明形成这种间隙的可行性,并产生一类新的高效能量转换装置。 如果成功,拟议的研究将产生一种新的纳米间隙形成技术,可用于固态冷却设备,固态热电发电机和国防(辐射硬)应用的高速真空电子设备。这种设备的能量转换效率接近热力学(卡诺)极限,因此该项目可以通过在冷却应用中取代机械压缩机或生产更高效的热电发电机来节省冷却和发电应用中的大量能源。这项研究将为亚利桑那大学应用数学跨学科项目的研究生提供宝贵的培训机会,并为布达佩斯技术经济大学与世界知名的应用力学系的研究生交流提供宝贵的培训机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eniko Enikov其他文献

Eniko Enikov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eniko Enikov', 18)}}的其他基金

Fusion of Micro-Array Flow Sensor Data for Smart Cerebral Spinal Fluid Drainage Shunts
用于智能脑脊液引流分流器的微阵列流量传感器数据融合
  • 批准号:
    1705761
  • 财政年份:
    2017
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Dynamic Stabilization of Electro-Spinning Process for Production of Inflatable Drug-Delivery Stents
用于生产充气式药物输送支架的静电纺丝工艺的动态稳定
  • 批准号:
    1462752
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
NUE: Engineering Innovation in Biomedical Nanotechnology
NUE:生物医学纳米技术的工程创新
  • 批准号:
    1446098
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
AIR Option 1: Technology Translation - Feasibility Analysis of Self-Administered Eye Tactile Tonometer
AIR 选项 1:技术翻译 - 自控眼部触觉眼压计的可行性分析
  • 批准号:
    1311851
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
I-Corps: Hand-Held Tonometer for Transpalpebral Intraocular Pressure Measurement
I-Corps:用于经睑眼压测量的手持式眼压计
  • 批准号:
    1157898
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Wearable Micro-Sensors for Digital Palpation Tonometry and Soft Tissue Analysis
用于数字触诊眼压计和软组织分析的可穿戴微传感器
  • 批准号:
    0856761
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Low-Cost Multi-Purpose MEMS/Mechatronics Testing Laboratory for Undergraduate Students
面向本科生的低成本多用途 MEMS/机电一体化测试实验室
  • 批准号:
    0633312
  • 财政年份:
    2007
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Virtual Three-Dimensional Tactile Display for Science and Technology Education of the Blind
盲人科技教育虚拟三维触觉显示器
  • 批准号:
    0603198
  • 财政年份:
    2006
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
NUE: Engineering Properties and Micro/Nano Technologies for Biological Systems
NUE:生物系统的工程特性和微/纳米技术
  • 批准号:
    0407369
  • 财政年份:
    2004
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
NER: Charge Writing for Nano-Assembly of Bio-Molecules on Artificial Surfaces
NER:人工表面上生物分子纳米组装的电荷写入
  • 批准号:
    0303868
  • 财政年份:
    2003
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似海外基金

MFB: Next-generation Proximity Labeling Technologies to Map Subcellular Transcriptomes and RNA Interactomes in Living Cells with Nanometer Resolution
MFB:下一代邻近标记技术以纳米分辨率绘制活细胞中的亚细胞转录组和 RNA 相互作用组图
  • 批准号:
    2330686
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
  • 批准号:
    2224902
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Nanometer-scale 3D analysis of brain tissue of schizophrenia cases in the U.S.
对美国精神分裂症病例脑组织进行纳米级 3D 分析
  • 批准号:
    23H02800
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: The interaction of surfaces structured at the nanometer scale with the cells in the physiological environment
合作研究:纳米尺度结构的表面与生理环境中细胞的相互作用
  • 批准号:
    2224942
  • 财政年份:
    2023
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Spectroscopic high-speed motion picture measurement of sound field with nanometer-order precision
纳米级精度的声场光谱高速运动图像测量
  • 批准号:
    22K18809
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Development of high-performance organic photovoltaic materials that do not require nanometer-scale phase separation
开发不需要纳米级相分离的高性能有机光伏材料
  • 批准号:
    22K19091
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Heterointerface phonon-transport analysis by nanometer-resolution electron spectroscopy
通过纳米分辨率电子能谱进行异质界面声子输运分析
  • 批准号:
    22H01959
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Nanometer-to-micrometer Length Scale Mechanical and Tribological Characterization System
纳米到微米长度尺度的机械和摩擦学表征系统
  • 批准号:
    RTI-2023-00432
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Tools and Instruments
Sub-nanometer Optical Imaging and Self-Assembly on Plasmonic Metals
等离子金属的亚纳米光学成像和自组装
  • 批准号:
    RGPIN-2022-03088
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Machine-Learning-Driven Synthesis Methodologies for Analog and RF Integrated Circuits in Advanced Nanometer Technologies
先进纳米技术中模拟和射频集成电路的机器学习驱动合成方法
  • 批准号:
    RGPIN-2019-04130
  • 财政年份:
    2022
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了