Engineering Electrolyte Materials in Energy Storage Devices
储能装置中的工程电解质材料
基本信息
- 批准号:0932761
- 负责人:
- 金额:$ 36.33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2016-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
NON-TECHNICAL DESCRIPTIONThe global annual energy consumption is increasing at an unprecedented rate, yet the conventional energy sources are becoming more limited and the general energy use is getting more expensive. Therefore, creative solutions in more efficient energy conversion, storage, and saving become much more critical in the coming decades. In addition, to exploit alternative energy sources, new energy-saving technologies using renewable power sources and more efficient energy storage systems are emerging. Solid oxide fuel cells are regarded as the highest in efficiency amongst all fuel cells and have the promise of low cost in numerous applications. Rechargeable lithium-ion batteries, which have dominated the market in portable electronic industry, are viable candidates for powering an increasingly diverse range of devices. In this proposal, we aim to synthesize and optimize a critical and active component in these energy storage devices at miniaturized scales, the electrolyte, to further improve the energy storage density and improve the device performance. The proposed research will serve as a training platform for future generations of engineers, who are not only experienced with cutting-edge research techniques, but are also creative, conscientious and committed to solving the global energy crisis. TECHNICAL DETAILS The objective of this research is to synthesize metal oxide based electrolyte materials in miniaturized energy storage devices and investigate their structural properties and ionic conductivity to understand the microscopic pathways governing their performance as an electrolyte, thereby controlling and improving its efficiency. To rationally design an effective electrolyte material with a large contact area with the electrodes, this work will elucidate the growth mechanism of these materials by atomic layer deposition and its effect on controlling the electrolyte?s composition and microstructure and integrate these thin film materials conformally over miniaturized three-dimensional complex structures and assess their ionic conductivity and efficiency. As these metal oxide materials find broader applications in areas including electronics, optics, sensors, and energy storage, this research is transformational in realizing design and optimization of materials with multiple functionalities. This research has a broader impact through the education and training of the future generations of engineers who are skilled with state-of-the-art research techniques and are conscientious, creative, and committed to solve the global energy crisis.
全球每年的能源消耗正以前所未有的速度增长,然而传统能源越来越有限,一般能源的使用越来越昂贵。因此,在未来几十年里,更有效的能源转换、储存和节约的创造性解决方案变得更加重要。此外,为了开发替代能源,使用可再生能源的新节能技术和更高效的能源存储系统正在出现。固体氧化物燃料电池被认为是所有燃料电池中效率最高的一种,在许多应用中具有低成本的前景。可充电锂离子电池在便携式电子行业占据主导地位,是为日益多样化的设备供电的可行选择。在本课题中,我们的目标是在小型化的尺度上合成和优化这些储能装置的关键和有效成分——电解质,以进一步提高储能密度,提高器件性能。该项目将为未来几代工程师提供培训平台,这些工程师不仅拥有尖端的研究技术,而且具有创造力、责任心,致力于解决全球能源危机。本研究的目的是在小型储能装置中合成金属氧化物基电解质材料,并研究其结构特性和离子电导率,以了解控制其作为电解质性能的微观途径,从而控制和提高其效率。为了合理设计一种与电极大面积接触的有效电解质材料,本工作将阐明这些材料通过原子层沉积的生长机制及其对电解质控制的作用。并将这些薄膜材料在小型化的三维复杂结构上进行共形集成,并评估其离子电导率和效率。随着这些金属氧化物材料在电子、光学、传感器和储能等领域的广泛应用,本研究在实现多功能材料的设计和优化方面具有变革性意义。这项研究通过教育和培训未来几代工程师具有更广泛的影响,这些工程师熟练掌握最先进的研究技术,恪尽职守,富有创造力,致力于解决全球能源危机。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jane Chang其他文献
Entrepreneurship students use of causation, effectuation and bricolage in a microcosm
创业学生在微观世界中运用因果关系、效果和拼凑
- DOI:
10.5465/ambpp.2017.15077abstract - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Alison Rieple;Jane Chang - 通讯作者:
Jane Chang
113. Understanding the Relationship Between Adverse Childhood Experiences and Depression in Adolescents: A Pilot Study
- DOI:
10.1016/j.jadohealth.2022.01.208 - 发表时间:
2022-04-01 - 期刊:
- 影响因子:
- 作者:
Tatiana Ndjatou;Yuqing Qiu;Linda Gerber;Jane Chang - 通讯作者:
Jane Chang
“H..P…What?” HPV vaccine misconceptions among parents and adolescents in a diverse clinic population: Why are we missing the mark with early vaccination? (2140)
“人乳头瘤病毒……什么?”在不同诊所人群中父母和青少年对人乳头瘤病毒疫苗的误解:为什么我们在早期接种方面没有达到目标?(2140)
- DOI:
10.1016/j.ygyno.2023.06.265 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.100
- 作者:
Muhammad Danyal Ahsan;Emily Webster;Amita Kulkarni;Corbyn Nchako;Emilio Peñate;Shanice Beaumont;Xiaoyue Ma;Melanie Wilson-Taylor;Jane Chang;Lisa Ipp;Monika Safford;Evelyn Cantillo;Melissa Frey;Kevin Holcomb;Eloise Chapman-Davis - 通讯作者:
Eloise Chapman-Davis
Battling HPV misinformation to improve vaccination: The use of a novel patient activated learning system (PALS) among university students (2169)
与 HPV 错误信息作斗争以提高疫苗接种率:在大学生(2169 名)中使用一种新颖的患者激活学习系统(PALS)
- DOI:
10.1016/j.ygyno.2023.06.291 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.100
- 作者:
Corbyn Nchako;Emilio Peñate;Amelia Greiner Safi;Muhammad Danyal Ahsan;Amita Kulkarni;Emily Webster;Meghan Witherow;Xiaoyue Ma;Evelyn Cantillo;Melissa Frey;Kevin Holcomb;Melanie Wilson-Taylor;Jane Chang;Lisa Ipp;Eloise Chapman-Davis - 通讯作者:
Eloise Chapman-Davis
E-Cigarette Warning Labels to Prevent Adolescent Use: A Letter Response.
防止青少年使用电子烟的警告标签:一封信函回应。
- DOI:
10.1016/j.jadohealth.2016.02.009 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
J. Hughes;G. Hildick;M. Pesko;L. Shearer;Jane Chang;G. Loughlin;L. Ipp - 通讯作者:
L. Ipp
Jane Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jane Chang', 18)}}的其他基金
Atomic layer etching through controlled surface chemistry
通过受控表面化学进行原子层蚀刻
- 批准号:
1805112 - 财政年份:2018
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
Plasma Processing Science: Many Scales, Many Applications, One discipline to be held July 27-August 1, 2014 at Bryant University, Smithville, RI
等离子体处理科学:多种尺度、多种应用、一门学科将于 2014 年 7 月 27 日至 8 月 1 日在罗德岛州史密斯维尔布莱恩特大学举行
- 批准号:
1418537 - 财政年份:2014
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
2012 Plasma Processing Science GRC & GRS, July 22-27, 2012, at Bryant University, Smithfield, RI
2012年等离子体加工科学GRC
- 批准号:
1202232 - 财政年份:2012
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
Engineering Infrastructure Renovation for Sustainability Research
可持续发展研究的工程基础设施改造
- 批准号:
0963183 - 财政年份:2010
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
Engineering Crystalline Oxides on Wide Band Gap Semiconductors
宽带隙半导体上的工程晶体氧化物
- 批准号:
0801996 - 财政年份:2008
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
Synthesis of Multifunctional Metal Oxides by Radical Enhanced Atomic Layer Deposition
自由基增强原子层沉积合成多官能金属氧化物
- 批准号:
0758263 - 财政年份:2008
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
Synthesis and characterization of erbium doped metal oxide photonic materials for optoelectronics application
光电子应用中掺铒金属氧化物光子材料的合成与表征
- 批准号:
0522534 - 财政年份:2005
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
Design and Integration of a Cylindrical Ion Trap Array for a Micro-Total-Chemical-Analysis System
用于微型全化学分析系统的圆柱形离子阱阵列的设计和集成
- 批准号:
0329829 - 财政年份:2003
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
Plasma Enhanced Atomic Layer Deposition: Materials Synthesis and Plasms-Surface Chemistry
等离子体增强原子层沉积:材料合成和等离子体表面化学
- 批准号:
0317449 - 财政年份:2003
- 资助金额:
$ 36.33万 - 项目类别:
Continuing Grant
Design and Integration of a Cylindrical Ion Trap Array for a Micro-Total-Chemical-Analysis System
用于微型全化学分析系统的圆柱形离子阱阵列的设计和集成
- 批准号:
0230191 - 财政年份:2002
- 资助金额:
$ 36.33万 - 项目类别:
Standard Grant
相似海外基金
Sustainable Responsive Hybrid Ionic Liquid-Polymer Gel Electrolyte Materials
可持续响应杂化离子液体-聚合物凝胶电解质材料
- 批准号:
EP/Y005309/1 - 财政年份:2024
- 资助金额:
$ 36.33万 - 项目类别:
Research Grant
Effects of surface modified nano carbon materials by pulsed power on polymer electrolyte fuel cell
脉冲功率表面改性纳米碳材料对聚合物电解质燃料电池的影响
- 批准号:
21K04010 - 财政年份:2021
- 资助金额:
$ 36.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Electrolyte matrix materials for structural battery composites
用于结构电池复合材料的电解质基体材料
- 批准号:
2279124 - 财政年份:2019
- 资助金额:
$ 36.33万 - 项目类别:
Studentship
State of Art Electrolyte materials for Novel Room Temperature All Solid State Fluoride ion Batteries
用于新型室温全固态氟离子电池的最先进电解质材料
- 批准号:
19K15306 - 财政年份:2019
- 资助金额:
$ 36.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of Innovative Electrolyte Materials for Aluminum Rechargeable Batteries Based on Structural Characteristics
基于结构特性的铝充电电池创新电解质材料开发
- 批准号:
18K14310 - 财政年份:2018
- 资助金额:
$ 36.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Realization of scanning ECM for difficult-to-machine materials by electrolyte suction tool with electrode for narrowing current region
利用电极缩小电流区域的电解液抽吸工具实现难加工材料的扫描ECM
- 批准号:
18H01348 - 财政年份:2018
- 资助金额:
$ 36.33万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interfacial resistance of cathode and electrolyte materials in solid oxide cells
固体氧化物电池中阴极和电解质材料的界面电阻
- 批准号:
18K05278 - 财政年份:2018
- 资助金额:
$ 36.33万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure Analysis and Design of New Materials for Electrolyte in Fuel Cells Performed at Intermediate Temperature Range
中温燃料电池电解质新材料的结构分析与设计
- 批准号:
18K14014 - 财政年份:2018
- 资助金额:
$ 36.33万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Exploring Cathode and Solid Electrolyte Materials for All-solid-state Battery Applications
探索全固态电池应用的正极和固体电解质材料
- 批准号:
1834544 - 财政年份:2017
- 资助金额:
$ 36.33万 - 项目类别:
Studentship
Sustainable Synthesis of Solid Electrolyte Materials for Next Generation All-Solid-State Rechargeable Batteries
下一代全固态可充电电池固体电解质材料的可持续合成
- 批准号:
1963789 - 财政年份:2017
- 资助金额:
$ 36.33万 - 项目类别:
Studentship