CAREER: Explicit class field theory, Stark's conjectures, and families of modular forms

职业:显式类场论、斯塔克猜想和模块化形式族

基本信息

  • 批准号:
    0952251
  • 负责人:
  • 金额:
    $ 47.13万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

This project proposes to study the explicit construction of class fields by proving explicit formulas for Gross-Stark units. This will build on recent work of the principal investigator in collaboration with Henri Darmon and Robert Pollack, in which the weak Gross-Stark conjecture was proven under certain assumptions. It will also incorporate previous work of the principal investigator in which an exact formula for Gross-Stark units was conjectured. Furthermore, this project proposes to develop a unified theory of locally constructed "Darmon style" cohomology classes by linking Darmon's integration theory with the p-adic Langlands program. Connections to other outstanding conjectures concerning trivial zeroes of p-adic L-functions will be studied.This project aims to help foster an increased community of interaction and collaboration between the University of California, Santa Cruz, Stanford University, and the American Institute of Mathematics. This increased interaction will be highlighted by regularly held mini-conferences on the topics of Number Theory and Arithmetic Algebraic Geometry. Furthermore, a postdoc will be hired at UCSC to help foster the research environment, and in particular to interact with students on research topics. As part of this proposal, the PI plans to continue expository writing aimed at communicating high level mathematics to a student audience. Kronecker's "dream of youth" was to explicitly construct all the abelian extensions of quadratic imaginary fields. Hilbert presented the problem for general number fields as the 12th problem in his famous list. The search for an explicit class field theory has motivated many great advances in number theory. Its prime successes include the Kronecker-Weber theorem and the theory of complex multiplication. This project hopes to extend the understanding of explicit class field theory beyond the setting of complex multiplication. The main technique is to study the connection between units in number fields and special values of zeta-functions. This connection is a central motivating theme in number theory.
本计画提出通过证明Gross-Stark单位的显式公式来研究类域的显式构造。这将建立在首席研究员与Henri Darmon和Robert Pollack合作的最近工作的基础上,其中弱Gross-Stark猜想在某些假设下得到了证明。它还将包括主要研究者以前的工作,其中确定了Gross-Stark单位的精确公式。此外,本计画建议将Darmon的积分理论与p-adic Langlands程式连结起来,发展出一个局部建构的“Darmon风格”上同调类的统一理论。 该项目旨在帮助促进加州大学、圣克鲁斯大学、斯坦福大学和美国数学研究所之间的互动和合作。 这种增加的互动将突出定期举行的小型会议上的数论和算术代数几何的主题。 此外,博士后将在UCSC聘请,以帮助促进研究环境,特别是与学生的研究课题互动。 作为该提案的一部分,PI计划继续进行旨在向学生观众传达高水平数学的临时写作。克罗内克的“青春梦想”是明确地构造所有的二次虚域的阿贝尔扩张。希尔伯特将一般数域的问题作为他著名列表中的第12个问题提出。寻找一个明确的类域理论激发了数论的许多重大进展。它的主要成就包括克罗内克-韦伯定理和复数乘法理论。这个项目希望扩展对显式类域理论的理解,超越复数乘法的设置。主要技术是研究数域中的单位与zeta函数的特殊值之间的联系。这种联系是数论中的一个中心动机主题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samit Dasgupta其他文献

The Eisenstein cocycle and Gross’s tower of fields conjecture
  • DOI:
    10.1007/s40316-015-0046-2
  • 发表时间:
    2016-01-07
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Samit Dasgupta;Michael Spieß
  • 通讯作者:
    Michael Spieß
A conjectural product formula for Brumer–Stark units over real quadratic fields
  • DOI:
    10.1016/j.jnt.2012.02.013
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samit Dasgupta
  • 通讯作者:
    Samit Dasgupta

Samit Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samit Dasgupta', 18)}}的其他基金

The Brumer-Stark Conjecture and its Refinements
布鲁默-斯塔克猜想及其改进
  • 批准号:
    2200787
  • 财政年份:
    2022
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Continuing Grant
Beyond L-functions: the Eisenstein Cocycle and Hilbert's 12th Problem
超越 L 函数:爱森斯坦余循环和希尔伯特第 12 个问题
  • 批准号:
    1901939
  • 财政年份:
    2019
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Continuing Grant
Special Values of p-adic L-Functions
p 进 L 函数的特殊值
  • 批准号:
    1600943
  • 财政年份:
    2016
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Standard Grant
Gross-Stark units and p-adic families of Hilbert modular forms
希尔伯特模形式的 Gross-Stark 单位和 p-adic 系列
  • 批准号:
    0900924
  • 财政年份:
    2009
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Standard Grant
Gross-Stark units, Stark-Heegner points, and explicit class field theory for totally real fields
完全实数域的 Gross-Stark 单位、Stark-Heegner 点和显式类域论
  • 批准号:
    0901041
  • 财政年份:
    2008
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Standard Grant
Gross-Stark units, Stark-Heegner points, and explicit class field theory for totally real fields
完全实数域的 Gross-Stark 单位、Stark-Heegner 点和显式类域论
  • 批准号:
    0653023
  • 财政年份:
    2007
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0402906
  • 财政年份:
    2004
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Fellowship Award

相似海外基金

Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23K28290
  • 财政年份:
    2024
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Real-time Assurance of Financial Guidance AI using Explicit Guardrails
使用显式护栏实时保证财务指导人工智能
  • 批准号:
    10072685
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Grant for R&D
ExPliCit - Exploring Plausible Circular futures
ExPliCit - 探索合理的循环期货
  • 批准号:
    EP/X039676/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Research Grant
Probing Amyloid Fibril Self-Assembly with Network Hamiltonian Simulations in Explicit Space
用显式空间中的网络哈密顿模拟探测淀粉样蛋白原纤维的自组装
  • 批准号:
    10715891
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
Emotional education programs focusing on implicit and explicit affect: Development of early intervention methods and examination of their effectiveness
关注内隐和外显情感的情绪教育项目:早期干预方法的开发及其有效性检验
  • 批准号:
    23K02962
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Neural mechanisms that determine cooperation and competition between explicit and implicit learning
决定显性学习和隐性学习之间合作与竞争的神经机制
  • 批准号:
    23KJ2231
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Global spatially explicit gridded transport model coupled with an integrated assessment model: a new-generation simulation framework for transport decarbonization strategy
全球空间明确网格交通模型与综合评估模型相结合:新一代交通脱碳战略模拟框架
  • 批准号:
    23H03600
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Replicating Dynamic Objects without Explicit 3D Reconstruction
无需显式 3D 重建即可复制动态对象
  • 批准号:
    23KJ0284
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Modular Cocycles, Explicit Class Field Theory, and Quantum Designs
模块化共循环、显式类场论和量子设计
  • 批准号:
    2302514
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Continuing Grant
Conference: Inclusive Paths in Explicit Number Theory
会议:显式数论中的包容性路径
  • 批准号:
    2302536
  • 财政年份:
    2023
  • 资助金额:
    $ 47.13万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了