Beyond L-functions: the Eisenstein Cocycle and Hilbert's 12th Problem

超越 L 函数:爱森斯坦余循环和希尔伯特第 12 个问题

基本信息

  • 批准号:
    1901939
  • 负责人:
  • 金额:
    $ 18.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Algebraic number theory concerns numbers that are solutions to polynomial equations. The number systems in which these solutions live are called algebraic number fields. One of the central motivating questions in number theory for over a century has been whether one can construct certain special algebraic number fields using analytic techniques. Hilbert stated this problem as the 12th in his famous list of 23 problems at the 1900 International Congress of Mathematicians. The problem has been solved in only the simplest cases. These solutions use special values of modular forms, which are certain analytic functions that have a rich supply of symmetries. This project outlines a program to give a solution to Hilbert's 12th problem in an infinite family of new situations. The key ideas are to use a modern form of analysis, called p-adic analysis, in conjunction with other advanced techniques in number theory including modular forms, Galois representations, and Iwasawa theory. Solving Hilbert's 12th problems in these new cases will be a major advance in our understanding of algebraic number systems. The PI has stated a conjecture with Spiess for an exact p-adic analytic formula for Gross-Stark units. These units, along with other easily written elements, generate the maximal abelian extension of totally real fields. Therefore, solving this problem can be viewed as providing a solution to Hilbert's 12th problem for totally real fields. Such a solution to Hilbert's 12th problem is not provided by the usual framework of conjectures for L-functions, such as Stark's conjectures. The PI will continue his work with Kakde on attacking his conjecture. Two new ideas relative to previous work on this topic are the use of the Taylor-Wiles "horizontal Iwasawa theory" method, as well as the introduction of group-ring families of modular forms. Next, in joint work with Spiess, the PI has stated a conjecture for the principal minors and characteristic polynomial of Gross' regulator. The PI plans to work together with Spiess and Kakde to generalize the techniques described above to higher rank (in particular the application of the Taylor-Wiles method) and thereby prove his conjecture on principal minors, which again goes beyond the usual framework of p-adic L-functions. Finally, the PI will work with Guido Kings to apply the Eisenstein cocycle to the study of abelian L-functions of general number fields. Two important test cases to consider are ground fields that are almost totally real and ground fields that are abelian extensions of CM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
代数数论关注的是多项式方程的解。这些解所在的数系称为代数数域。一个多世纪以来,数论的核心问题之一是能否利用解析技术构造某些特殊的代数数域。希尔伯特在1900年的国际数学家大会上列出了他著名的23个问题中的第12个问题。这个问题只在最简单的情况下得到了解决。这些解使用模形式的特殊值,模形式是某些具有丰富对称性的解析函数。这个项目概述了一个程序,在无限的新情况下给出希尔伯特第12问题的解。关键思想是使用一种现代形式的分析,称为p进分析,结合数论中的其他先进技术,包括模形式、伽罗瓦表示和岩川理论。在这些新情况下解决希尔伯特的第12个问题将是我们对代数数系理解的一个重大进步。PI已经和spess一起提出了一个关于Gross-Stark单位的精确p进解析公式的猜想。这些单元,连同其他易于编写的元素,生成全实数域的最大阿贝尔扩展。因此,解决这个问题可以看作是为全实场提供了希尔伯特第12个问题的解。对于希尔伯特第12问题的解,通常的l -函数的猜想框架,如Stark的猜想,并没有提供这样的解。私家侦探将继续与卡克德合作,攻击他的猜想。与此主题的先前工作相关的两个新想法是使用Taylor-Wiles的“水平Iwasawa理论”方法,以及引入模形式的群环族。其次,在与spess的合作中,PI对Gross调节器的主次多项式和特征多项式提出了一个猜想。PI计划与spess和Kakde一起工作,将上述技术推广到更高的秩(特别是泰勒-怀尔斯方法的应用),从而证明他关于主次函数的猜想,这再次超出了通常的p进l函数框架。最后,PI将与Guido Kings合作,将爱森斯坦循环应用于一般数域的阿贝尔l函数的研究。需要考虑的两个重要测试用例是几乎完全真实的接地域和CM域的阿贝尔扩展接地域。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On constant terms of Eisenstein series
  • DOI:
    10.4064/aa200621-24-2
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    S. Dasgupta;M. Kakde
  • 通讯作者:
    S. Dasgupta;M. Kakde
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samit Dasgupta其他文献

The Eisenstein cocycle and Gross’s tower of fields conjecture
  • DOI:
    10.1007/s40316-015-0046-2
  • 发表时间:
    2016-01-07
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Samit Dasgupta;Michael Spieß
  • 通讯作者:
    Michael Spieß
A conjectural product formula for Brumer–Stark units over real quadratic fields
  • DOI:
    10.1016/j.jnt.2012.02.013
  • 发表时间:
    2013-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Samit Dasgupta
  • 通讯作者:
    Samit Dasgupta

Samit Dasgupta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samit Dasgupta', 18)}}的其他基金

The Brumer-Stark Conjecture and its Refinements
布鲁默-斯塔克猜想及其改进
  • 批准号:
    2200787
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Special Values of p-adic L-Functions
p 进 L 函数的特殊值
  • 批准号:
    1600943
  • 财政年份:
    2016
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
CAREER: Explicit class field theory, Stark's conjectures, and families of modular forms
职业:显式类场论、斯塔克猜想和模块化形式族
  • 批准号:
    0952251
  • 财政年份:
    2010
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Gross-Stark units and p-adic families of Hilbert modular forms
希尔伯特模形式的 Gross-Stark 单位和 p-adic 系列
  • 批准号:
    0900924
  • 财政年份:
    2009
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Gross-Stark units, Stark-Heegner points, and explicit class field theory for totally real fields
完全实数域的 Gross-Stark 单位、Stark-Heegner 点和显式类域论
  • 批准号:
    0901041
  • 财政年份:
    2008
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Gross-Stark units, Stark-Heegner points, and explicit class field theory for totally real fields
完全实数域的 Gross-Stark 单位、Stark-Heegner 点和显式类域论
  • 批准号:
    0653023
  • 财政年份:
    2007
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    0402906
  • 财政年份:
    2004
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Fellowship Award

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

LEAPS-MPS: Elliptic Dedekind Sums, Eisenstein Cocycles, and p-adic L-Functions
LEAPS-MPS:椭圆戴德金和、爱森斯坦余循环和 p 进 L 函数
  • 批准号:
    2212924
  • 财政年份:
    2022
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
L-functions and Eisenstein series: p-adic aspects and applications
L-函数和爱森斯坦级数:p-adic 方面和应用
  • 批准号:
    1201333
  • 财政年份:
    2012
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
L-functions and Eisenstein series: p-adic aspects and applications
L-函数和爱森斯坦级数:p-adic 方面和应用
  • 批准号:
    1249384
  • 财政年份:
    2012
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Eisenstein Series, Operators and L-Functions
艾森斯坦级数、运算符和 L 函数
  • 批准号:
    0801029
  • 财政年份:
    2008
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Behaviours of non-holomorphic Eisenstein series and the theory of q-hypergeometric functions
非全纯爱森斯坦级数的行为和q-超几何函数理论
  • 批准号:
    19540049
  • 财政年份:
    2007
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analytic questions motivated by L functions, Eisenstein series, automorphic forms, and trace formulae
由 L 函数、爱森斯坦级数、自同构形式和迹公式引发的分析问题
  • 批准号:
    0503669
  • 财政年份:
    2005
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Arithmetic Cycles, Eisenstein Series, Automorphic L-Functions, and Complex Multiplication
算术循环、爱森斯坦级数、自同构 L 函数和复数乘法
  • 批准号:
    0245406
  • 财政年份:
    2003
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Standard Grant
Derivatives of Eisenstein Series L - Functions and the Theta Correspondence
爱森斯坦 L 级数的导数 - 函数和 Theta 对应关系
  • 批准号:
    9622987
  • 财政年份:
    1996
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Eisenstein Cocycles for Arithmetic Groups and Values of L-functions
数学科学:算术群和 L 函数值的爱森斯坦余循环
  • 批准号:
    9401843
  • 财政年份:
    1994
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Theta Functions and Eisenstein Serieson the Metaplectic Group
数学科学:Theta 函数和爱森斯坦 Metaplectic 群系列
  • 批准号:
    9023202
  • 财政年份:
    1991
  • 资助金额:
    $ 18.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了