Career: An Adaptive Compiler for Multi-core Environments

职业:多核环境的自适应编译器

基本信息

  • 批准号:
    0953667
  • 负责人:
  • 金额:
    $ 41.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-03-01 至 2015-02-28
  • 项目状态:
    已结题

项目摘要

Compilers are a critical component between the software developer and the computer. They translate application written by software developers into machine code that is processed by the computer. An important task of a compiler is to optimize applications so that they run efficiently. Traditional methods to develop optimizing compilers are ad-hoc, labor-intensive, and ineffective. As a consequence, optimizing compilers for a new processor often produces code that achieves only a fraction of the machine?s available performance. This is especially true for today's multi-core architectures, which are parallel processors on a single chip. This research will involve investigating techniques from the artificial intelligence community that will allow a compiler to automatically adapt and tune to new architectures. In effect, this research will replace hand-tuning with self-tuning compilers that adapt software automatically to match the performance characteristics of each target architecture.In this project, the PI proposes to explore the viability of developing adaptive compilers for multi-core environments (ACME) to allow application portability while still achieving high performance. The PI will create a statistical auto-tuning framework to support the probabilistic representation of the following features: the benefit analysis of optimizations, the identification and prediction of the appropriate runtime environment for different optimizations, and the generation of executables that efficiently combine several optimized code versions. He will invent components to measure accurately the characteristics of applications and targeted computing systems. The PI hopes to discover techniques to replace ?traditional? optimization benefit analysis with powerful machine learning models. These models will address the broad spectrum of parallel applications and multi-core environments, and they will be able to analyze and predict benefit under different dynamic contexts.
编译器是软件开发人员和计算机之间的关键组件。它们将软件开发人员编写的应用程序翻译成计算机处理的机器代码。编译器的一项重要任务是优化应用程序,使其有效运行。 开发优化编译器的传统方法是临时的,劳动密集型的,并且效率低下。 因此,为新处理器优化编译器通常只能产生一小部分代码。的可用性能。这对于当今的多核架构尤其如此,多核架构是单个芯片上的并行处理器。 这项研究将涉及调查来自人工智能社区的技术,这些技术将允许编译器自动适应和调整到新的架构。 实际上,这项研究将取代手动调优与自调优编译器,自动适应软件,以匹配每个目标architecture.In这个项目的性能特点,PI建议探讨开发自适应编译器的多核环境(ACME),使应用程序的可移植性,同时仍然实现高性能的可行性。 PI将创建一个统计自动调优框架,以支持以下功能的概率表示:优化的效益分析,识别和预测不同优化的适当运行时环境,以及生成有效结合联合收割机多个优化代码版本的可执行文件。他将发明组件来精确测量应用程序和目标计算系统的特性。PI希望发现技术来取代?传统?利用强大的机器学习模型进行优化效益分析。这些模型将解决广泛的并行应用程序和多核环境,它们将能够分析和预测不同动态环境下的收益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Cavazos其他文献

Instruction Cache Energy Saving Through Compiler Way-Placement
通过编译器方式放置指令缓存节能
  • DOI:
    10.1145/1403375.1403666
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Timothy M. Jones;S. Bartolini;B. D. Bus;John Cavazos;M. O’Boyle
  • 通讯作者:
    M. O’Boyle
Learning to Schedule Straight-Line Code
学习安排直线代码
  • DOI:
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Moss;P. Utgoff;John Cavazos;Doina Precup;Darko Stefanovi´c;C. Brodley;David Scheeff
  • 通讯作者:
    David Scheeff
An evaluation of different modeling techniques for iterative compilation
迭代编译的不同建模技术的评估
Predictive Modeling in a Polyhedral Optimization Space
  • DOI:
    10.1007/s10766-013-0241-1
  • 发表时间:
    2013-02-21
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Eunjung Park;John Cavazos;Louis-Noël Pouchet;Cédric Bastoul;Albert Cohen;P. Sadayappan
  • 通讯作者:
    P. Sadayappan
Using Per-Loop CPU Clock Modulation for Energy Efficiency in OpenMP Applications
在 OpenMP 应用程序中使用每环 CPU 时钟调制来提高能效

John Cavazos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Cavazos', 18)}}的其他基金

I-Corps: Real-Time Traffic Congestion Detection from Surveillance Videos
I-Corps:通过监控视频实时检测交通拥堵
  • 批准号:
    1340151
  • 财政年份:
    2013
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
SHF: Small: Collaborative Research: Adaptive Automatic Parallelization
SHF:小型:协作研究:自适应自动并行化
  • 批准号:
    1218734
  • 财政年份:
    2012
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
WORKSHOP: Code Generation and Optimization (CGO) 2009 Student Travel Support, March 22-25, 2009 in Seattle, WA
研讨会:代码生成和优化 (CGO) 2009 学生旅行支持,2009 年 3 月 22 日至 25 日,华盛顿州西雅图
  • 批准号:
    0934024
  • 财政年份:
    2009
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
Careers in High Performance Systems (CHiPS) Mentoring Workshop
高性能系统职业 (CHiPS) 指导研讨会
  • 批准号:
    0940003
  • 财政年份:
    2009
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
Systems Research Mentoring Workshop
系统研究指导研讨会
  • 批准号:
    0829760
  • 财政年份:
    2008
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant

相似海外基金

Personalised Adaptive Medicine
个性化适应性医学
  • 批准号:
    10100435
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    EU-Funded
VIPAuto: Robust and Adaptive Visual Perception for Automated Vehicles in Complex Dynamic Scenes
VIPAuto:复杂动态场景中自动驾驶车辆的鲁棒自适应视觉感知
  • 批准号:
    EP/Y015878/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Fellowship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Fellowship
Efficient and unbiased estimation in adaptive platform trials
自适应平台试验中的高效且公正的估计
  • 批准号:
    MR/X030261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Research Grant
Directed and adaptive evolution of photosynthetic systems
光合系统的定向和适应性进化
  • 批准号:
    MR/Y011635/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: HEAL: Heterogeneity-aware Efficient and Adaptive Learning at Clusters and Edges
RII Track-4:NSF:HEAL:集群和边缘的异质性感知高效自适应学习
  • 批准号:
    2327452
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335802
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
  • 批准号:
    2335801
  • 财政年份:
    2024
  • 资助金额:
    $ 41.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了