CAREER: New Directions for Sketching and Stream Computation
职业:草图绘制和流计算的新方向
基本信息
- 批准号:0953754
- 负责人:
- 金额:$ 51.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2017-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Various technological trends, such as faster networks, cheaper data storage, and ubiquitous data logging, have given us access to massive amounts of data. This gives rise to two fundamental questions that need to be addressed if we are to exploit this data: (a) How to process such data? Traditional models of computation and notions of efficiency need to be reconsidered when monitoring Gbps network traffic, mining petabytes of search engine data, or processing data that is distributed across multiple low-power sensors. (b) What to compute about such data? Often the data that is quickest to accumulate is data that is noisy, plagued by internal inconsistencies, or redundant. How can useful information be extracted from such data? Over the last decade, the study of sketching (a form of compression based on linear projection) and stream computation (space-bounded computation where the input is processed sequentially) has sought to address aspects of the above questions. The research goal of this project is to initiate and pursue a variety of new directions for these computational models. These include (a) Developing a more systematic understanding of computation in the existing models by seeking broad characterizations of problem tractability and developing "super synopses" that solve entire families of related problems. (b) Extending and tailoring existing models in order to address a wider range of applications such as processing stochastically generated data. (c) Establishing a general and intellectually intriguing abstraction of the challenges of computing with massive data sets that subsumes sketching and stream computation.In conjunction with these research goals, the project includes various educational and broader impact initiatives that are designed to ensure a wide dissemination of research results and to train graduate and undergraduate students.
各种技术趋势,如更快的网络,更便宜的数据存储和无处不在的数据记录,使我们能够访问大量的数据。 如果我们要利用这些数据,这就产生了两个需要解决的基本问题:(a)如何处理这些数据? 在监控Gbps网络流量、挖掘PB级搜索引擎数据或处理分布在多个低功耗传感器上的数据时,需要重新考虑传统的计算模型和效率概念。(b)如何计算这些数据? 通常,最快积累的数据是嘈杂的、受内部不一致性困扰的或冗余的数据。如何从这些数据中提取有用的信息?在过去的十年中,草图(一种基于线性投影的压缩形式)和流计算(空间有限的计算,其中输入被顺序处理)的研究试图解决上述问题的各个方面。 该项目的研究目标是为这些计算模型开创和追求各种新的方向。 其中包括(a)通过寻求问题易处理性的广泛特征和开发解决整个相关问题系列的“超级概要”,对现有模型中的计算有更系统的理解。 (b)扩展和定制现有模型,以解决更广泛的应用,如处理随机生成的数据。 (c)建立一个通用的和智力上有趣的抽象计算的挑战与大量的数据集,包括素描和流计算。在这些研究目标相结合,该项目包括各种教育和更广泛的影响倡议,旨在确保研究成果的广泛传播,并培养研究生和本科生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew McGregor其他文献
Graph Reconstruction from Noisy Random Subgraphs
从噪声随机子图重建图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew McGregor;Rik Sengupta - 通讯作者:
Rik Sengupta
Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams
动态和随机顺序流中最大覆盖范围的改进算法
- DOI:
10.48550/arxiv.2403.14087 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Amit Chakrabarti;Andrew McGregor;Anthony Wirth - 通讯作者:
Anthony Wirth
Producing knowledge about the sustainability and nutritional values of plant and animal-based beef: Funding, metrics, geographies and gaps
关于植物性和动物性牛肉的可持续性和营养价值的知识生产:资金、指标、地理区域和差距
- DOI:
10.1016/j.jclepro.2024.140900 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:10.000
- 作者:
Andrew McGregor;Milena Bojovic;Nadine Ghammachi;Seema Mihrshahi - 通讯作者:
Seema Mihrshahi
Historical Agrarian Change and its Connections to Contemporary Agricultural Extension in Northwest Cambodia
柬埔寨西北部的历史土地变迁及其与当代农业推广的联系
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Brian R. Cook;Paula Satizábal;Van Touch;Andrew McGregor;J. Diepart;Ariane Utomo;Nicholas Harrigan;Katharine McKinnon;Pao Srean;T. Tran;Andrea Babon - 通讯作者:
Andrea Babon
Disease Characteristics and Outcomes of Non-Melanoma Skin Cancers in Myeloproliferative Neoplasm (MPN) Patients Treated with Ruxolitinib
- DOI:
10.1182/blood-2022-162417 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Alexandros Rampotas;Luke Carter-Brzezinski;Tim C.P Somervaille;James Forryan;Bethan Psaila;Adam J Mead;Mamta Garg;Heather Laing;Louise Wallis;Nauman M Butt;Conal McConville;Ali Sahra;Andrew McGregor;Hannah Cowan;Andrew J. Innes;Joanne Ewing;Matthew Carter;Peter Dyer;Chun Huat Teh;Sebastian Francis - 通讯作者:
Sebastian Francis
Andrew McGregor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew McGregor', 18)}}的其他基金
AF: Small: Collaborative Research: New Challenges in Graph Stream Algorithms and Related Communication Games
AF:小:协作研究:图流算法和相关通信游戏的新挑战
- 批准号:
1908849 - 财政年份:2019
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
HDR TRIPODS: Institute for Integrated Data Science: A Transdisciplinary Approach to Understanding Fundamental Trade-offs and Theoretical Foundations
HDR TRIPODS:综合数据科学研究所:理解基本权衡和理论基础的跨学科方法
- 批准号:
1934846 - 财政年份:2019
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
AitF: Efficient Memory Management via Randomized, Streaming, and Online Algorithms
AitF:通过随机、流式和在线算法进行高效内存管理
- 批准号:
1637536 - 财政年份:2016
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
BIGDATA: Small: DA: Collaborative Research: From Data To Users: Providing Interpretable and Verifiable Explanations in Data Mining
BIGDATA:小:DA:协作研究:从数据到用户:在数据挖掘中提供可解释和可验证的解释
- 批准号:
1251110 - 财政年份:2013
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
AF: Small: Massive Graph Analysis via Linear Measurements: Towards a Theory of Homomorphic Co
AF:小:通过线性测量进行大规模图分析:走向同态 Co 理论
- 批准号:
1320719 - 财政年份:2013
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
相似海外基金
CAREER: New directions in the study of zeros and moments of L-functions
职业:L 函数零点和矩研究的新方向
- 批准号:
2339274 - 财政年份:2024
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: New Directions in Foliation Theory and Diffeomorphism Groups
职业:叶状理论和微分同胚群的新方向
- 批准号:
2239106 - 财政年份:2023
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: New Directions in p-adic Heights and Rational Points on Curves
职业生涯:p-adic 高度和曲线上有理点的新方向
- 批准号:
1945452 - 财政年份:2020
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: Shape Analysis in Submanifold Spaces: New Directions for Theory and Algorithms
职业:子流形空间中的形状分析:理论和算法的新方向
- 批准号:
1945224 - 财政年份:2020
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: New Directions in Graph Algorithms
职业:图算法的新方向
- 批准号:
1750140 - 财政年份:2018
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
2016 Presidential and AAAS Mentor Alumni Meeting: New Directions for Inclusive STEM Education & Career Mentoring
2016 年总统暨 AAAS 导师校友会:包容性 STEM 教育新方向
- 批准号:
1631967 - 财政年份:2016
- 资助金额:
$ 51.56万 - 项目类别:
Standard Grant
CAREER: New Directions in Deep Representation Learning from Complex Multimodal Data
职业:复杂多模态数据深度表示学习的新方向
- 批准号:
1453651 - 财政年份:2015
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: New Directions for Metric Learning
职业:度量学习的新方向
- 批准号:
1550179 - 财政年份:2015
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: New Directions in Spatial Statistics
职业:空间统计的新方向
- 批准号:
1519890 - 财政年份:2014
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant
CAREER: New Directions in Arithmetic Computation
职业:算术计算的新方向
- 批准号:
1350572 - 财政年份:2014
- 资助金额:
$ 51.56万 - 项目类别:
Continuing Grant