AitF: Efficient Memory Management via Randomized, Streaming, and Online Algorithms
AitF:通过随机、流式和在线算法进行高效内存管理
基本信息
- 批准号:1637536
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Memory management is an essential component of computer systems ranging from small low-power and mobile devices up to large data centers. Memory is necessary for any non-trivial computing process that needs to be performed in order to store the input data and the state of the computation. The goal of efficient memory management is to allocate the available memory to the different processes that need to be performed in such a way that the speed of the subsequent computation is maximized; the energy used by the system is minimized; and the available memory hardware is fully exploited. This project is focused on improving existing memory management approaches and could lead to significant improvements in the computer infrastructure used in a broad range of applications. The project will also train students, both through curriculum development and direct involvement in the research, in the application of algorithm design to the field of computer systems.In this project, we focus on designing and analyzing new randomized algorithms for various problems that arise in the context of memory management. These include both lightweight data stream or "sketch-based" algorithms that are fast and use limited memory, and online algorithms that need to commit to decisions about how to best to use a small amount of available memory without knowing what data or operations on this data will be relevant in the future. We will also develop a new randomized technique for compacting memory even for languages such as C and C++ that use explicit memory management and where objects cannot be relocated. Our approach should mitigate the risk of potentially catastrophic fragmentation and thereby improve memory utilization and performance.
从小型低功耗和移动设备到大型数据中心,内存管理是计算机系统的重要组成部分。为了存储输入数据和计算状态而需要执行的任何重要计算过程都需要内存。高效内存管理的目标是将可用内存分配给需要执行的不同进程,从而使后续计算的速度最大化;系统使用的能量被最小化;并且可以充分利用可用的内存硬件。这个项目的重点是改进现有的内存管理方法,并可能导致在广泛应用中使用的计算机基础设施的重大改进。该项目还将通过课程开发和直接参与研究,培养学生将算法设计应用于计算机系统领域。在这个项目中,我们专注于设计和分析新的随机算法,以解决在内存管理环境中出现的各种问题。这包括轻量级数据流或“基于草图”的算法,这些算法速度快,使用有限的内存,而在线算法需要在不知道这些数据上的哪些数据或操作在未来是相关的情况下,就如何最好地使用少量可用内存做出决策。我们还将开发一种新的随机化技术,用于压缩内存,甚至适用于像C和c++这样使用显式内存管理且对象不能重新定位的语言。我们的方法可以减轻潜在灾难性碎片的风险,从而提高内存利用率和性能。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Trace Reconstruction: Generalized and Parameterized
迹线重建:广义化和参数化
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:2.5
- 作者:Krishnamurthy, Akshay;Mazumdar, Arya;McGregor, Andrew;Pal, Soumyabrata
- 通讯作者:Pal, Soumyabrata
Compact Representation of Uncertainty in Clustering
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Craig S. Greenberg;Nicholas Monath;Ari Kobren;Patrick Flaherty;A. Mcgregor;A. McCallum
- 通讯作者:Craig S. Greenberg;Nicholas Monath;Ari Kobren;Patrick Flaherty;A. Mcgregor;A. McCallum
Intervention Efficient Algorithms for Approximate Learning of Causal Graphs
因果图近似学习的有效干预算法
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Addanki, Raghavendra;McGregor, Andrew;Musco, Cameron
- 通讯作者:Musco, Cameron
Graph Reconstruction from Random Subgraphs
从随机子图重建图
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:McGregor, Andrew;Sengupta, Rik
- 通讯作者:Sengupta, Rik
PredictRoute: A Network Path Prediction Toolkit
- DOI:10.1145/3543516.3460107
- 发表时间:2021-05
- 期刊:
- 影响因子:0
- 作者:Rachee Singh;D. Tench;Phillipa Gill;A. Mcgregor
- 通讯作者:Rachee Singh;D. Tench;Phillipa Gill;A. Mcgregor
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew McGregor其他文献
Graph Reconstruction from Noisy Random Subgraphs
从噪声随机子图重建图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Andrew McGregor;Rik Sengupta - 通讯作者:
Rik Sengupta
Improved Algorithms for Maximum Coverage in Dynamic and Random Order Streams
动态和随机顺序流中最大覆盖范围的改进算法
- DOI:
10.48550/arxiv.2403.14087 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Amit Chakrabarti;Andrew McGregor;Anthony Wirth - 通讯作者:
Anthony Wirth
Producing knowledge about the sustainability and nutritional values of plant and animal-based beef: Funding, metrics, geographies and gaps
关于植物性和动物性牛肉的可持续性和营养价值的知识生产:资金、指标、地理区域和差距
- DOI:
10.1016/j.jclepro.2024.140900 - 发表时间:
2024-02-15 - 期刊:
- 影响因子:10.000
- 作者:
Andrew McGregor;Milena Bojovic;Nadine Ghammachi;Seema Mihrshahi - 通讯作者:
Seema Mihrshahi
Historical Agrarian Change and its Connections to Contemporary Agricultural Extension in Northwest Cambodia
柬埔寨西北部的历史土地变迁及其与当代农业推广的联系
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Brian R. Cook;Paula Satizábal;Van Touch;Andrew McGregor;J. Diepart;Ariane Utomo;Nicholas Harrigan;Katharine McKinnon;Pao Srean;T. Tran;Andrea Babon - 通讯作者:
Andrea Babon
Disease Characteristics and Outcomes of Non-Melanoma Skin Cancers in Myeloproliferative Neoplasm (MPN) Patients Treated with Ruxolitinib
- DOI:
10.1182/blood-2022-162417 - 发表时间:
2022-11-15 - 期刊:
- 影响因子:
- 作者:
Alexandros Rampotas;Luke Carter-Brzezinski;Tim C.P Somervaille;James Forryan;Bethan Psaila;Adam J Mead;Mamta Garg;Heather Laing;Louise Wallis;Nauman M Butt;Conal McConville;Ali Sahra;Andrew McGregor;Hannah Cowan;Andrew J. Innes;Joanne Ewing;Matthew Carter;Peter Dyer;Chun Huat Teh;Sebastian Francis - 通讯作者:
Sebastian Francis
Andrew McGregor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew McGregor', 18)}}的其他基金
AF: Small: Collaborative Research: New Challenges in Graph Stream Algorithms and Related Communication Games
AF:小:协作研究:图流算法和相关通信游戏的新挑战
- 批准号:
1908849 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
HDR TRIPODS: Institute for Integrated Data Science: A Transdisciplinary Approach to Understanding Fundamental Trade-offs and Theoretical Foundations
HDR TRIPODS:综合数据科学研究所:理解基本权衡和理论基础的跨学科方法
- 批准号:
1934846 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
BIGDATA: Small: DA: Collaborative Research: From Data To Users: Providing Interpretable and Verifiable Explanations in Data Mining
BIGDATA:小:DA:协作研究:从数据到用户:在数据挖掘中提供可解释和可验证的解释
- 批准号:
1251110 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Massive Graph Analysis via Linear Measurements: Towards a Theory of Homomorphic Co
AF:小:通过线性测量进行大规模图分析:走向同态 Co 理论
- 批准号:
1320719 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: New Directions for Sketching and Stream Computation
职业:草图绘制和流计算的新方向
- 批准号:
0953754 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
- 批准号:
2339701 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRII: OAC: Towards Efficient Memory Management on Terabyte-Scale CXL-Enabled Tiered Memory Systems
CRII:OAC:在支持 CXL 的 TB 级分层内存系统上实现高效内存管理
- 批准号:
2348350 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
- 批准号:
2345655 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Cache-Coherent Accelerators for Efficient Persistent Memory Programming
CSR:小型:用于高效持久内存编程的缓存一致性加速器
- 批准号:
2245999 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
ECCS-EPSRC. Acoustically Induced Ferromagnetic Resonance (FMR) Assisted Energy Efficient Spin Torque Memory Devices
ECCS-EPSRC。
- 批准号:
EP/X036715/1 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2312366 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2403723 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Leveraging physical properties of modern flash memory chips for resilient, secure, and energy-efficient edge storage systems
职业:利用现代闪存芯片的物理特性打造弹性、安全且节能的边缘存储系统
- 批准号:
2346853 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant