CAREER: Matroids, polytopes, and their valuations in algebra and geometry
职业:拟阵、多面体及其在代数和几何中的估值
基本信息
- 批准号:0956178
- 负责人:
- 金额:$ 44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CAREER: Matroids, polytopes, and their valuations in algebra and geometryThis work is driven by the philosophy that many objects, relationships, and procedures in pure and applied mathematics are best understood by studying the rich discrete structures underlying them. The PI will study objects arising in numerical anaylsis (zonotopal spaces), invariant theory and algebraic geometry (Cox-Nagata rings), enumerative geometry of ramified covers (Hurwitz numbers), and tropical geometry (tropical linear spaces and tropical homogeneous spaces). Several important features of these objects are encoded in the combinatorics of (Coxeter) matroids, polytopes, and valuations. The results obtained will have applications in box spline theory and phylogenetics.This research program is the academic backbone of the San Francisco State University-Colombia Combinatorics Initiative, an emerging collaboration between faculty and students in these two locations, most of whom are members of underrepresented groups in mathematics. The purpose of this initiative is to provide influential research and teaching experiences to two underserved communities in mathematics. Through joint courses and research projects, students participate in their first international academic experience, while making serious scientific contributions.This proposal is being funded jointly by Combinatorics and the Office of International Science and Engineering.
职业:拟阵、多面体及其在代数和几何中的赋值这一工作是由这样一种哲学驱动的,即在纯数学和应用数学中,许多对象、关系和程序都是通过研究它们背后丰富的离散结构来最好地理解的。PI将研究数值分析(zonotopal空间),不变理论和代数几何(Cox-Nagata环),分枝覆盖的枚举几何(Hurwitz数)和热带几何(热带线性空间和热带齐性空间)中出现的对象。这些对象的几个重要特征被编码在(Coxeter)拟阵、多面体和赋值的组合学中。所获得的结果将在盒样条理论和遗传学的应用。这个研究计划是学术骨干的旧金山弗朗西斯科州立大学-哥伦比亚组合动力学倡议,教师和学生之间的新兴合作,在这两个位置,其中大部分是数学代表性不足的群体的成员。这项倡议的目的是提供有影响力的研究和教学经验,在数学两个服务不足的社区。通过联合课程和研究项目,学生参与他们的第一次国际学术经验,同时作出认真的科学贡献。该提案由组合学和国际科学与工程办公室共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federico Ardila其他文献
Tres lecciones en combinatoria algebraica. III. Arreglos de hiperplanos
代数组合的三门学习。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Emerson Le'on;M. Rosas;Mark Skandera - 通讯作者:
Mark Skandera
The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial
Hirzebruch 曲面的双 Gromov-Witten 不变量是分段多项式
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;E. Brugallé - 通讯作者:
E. Brugallé
Geodesics in CAT(0) Cubical Complexes
CAT(0) 立方复形中的测地线
- DOI:
10.1016/j.aam.2011.06.004 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Megan Owen;S. Sullivant - 通讯作者:
S. Sullivant
The Equivariant Volumes of the Permutahedron
置换面体的等变体积
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Federico Ardila;A. Schindler;Andrés R. Vindas - 通讯作者:
Andrés R. Vindas
Subdominant Matroid Ultrametrics
次主拟阵 Ultrametrics
- DOI:
10.1007/s00026-004-0227-1 - 发表时间:
2004 - 期刊:
- 影响因子:0.5
- 作者:
Federico Ardila - 通讯作者:
Federico Ardila
Federico Ardila的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Federico Ardila', 18)}}的其他基金
RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
- 批准号:
2154279 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Polytopes and Matroids in Algebra and Geometry
代数和几何中的多面体和拟阵
- 批准号:
1855610 - 财政年份:2019
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
RUI: Algebraic and Geometric Aspects of Matroids, Polytopes, and Arrangements
RUI:拟阵、多面体和排列的代数和几何方面
- 批准号:
1600609 - 财政年份:2016
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Formal Power Series and Algebraic Combinatorics: An International Combinatorics Conference
形式幂级数和代数组合学:国际组合学会议
- 批准号:
0963923 - 财政年份:2010
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
Forbidden Substructures in Matroids and Graphs
拟阵和图中的禁止子结构
- 批准号:
2884208 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Studentship
Tropical Combinatorics of Graphs and Matroids
图和拟阵的热带组合
- 批准号:
2246967 - 财政年份:2023
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
Optimization, matroids and graphs
优化、拟阵和图表
- 批准号:
RGPIN-2022-03191 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Discovery Grants Program - Individual
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
MPS-Ascend: Triangulations of the Product of Two Simplices and Matroids from Fine Mixed Subdivisions
MPS-Ascend:精细混合细分的两个单纯形和拟阵乘积的三角剖分
- 批准号:
2213323 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Fellowship Award
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2229915 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Standard Grant
RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
- 批准号:
2154279 - 财政年份:2022
- 资助金额:
$ 44万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2053243 - 财政年份:2021
- 资助金额:
$ 44万 - 项目类别:
Standard Grant