Polytopes and Matroids in Algebra and Geometry
代数和几何中的多面体和拟阵
基本信息
- 批准号:1855610
- 负责人:
- 金额:$ 27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last few decades combinatorics has grown and matured immensely as a field, in response to the mathematical needs of modern computing and the computational needs of all fields of mathematics. In particular, combinatorics and geometry have benefitted each other tremendously in recent years, both by the ways in which they are connected directly, and by learning from each other?s philosophies and techniques. This project studies the discrete structure of algebraic and geometric objects, and the algebraic and geometric structure of matroids and polytopes. This interdisciplinary perspective offers unexpected and effective approaches to long-standing problems. This research program constitutes the academic backbone of a vibrant research and training collaboration among primarily undergraduate institutions in the U.S. and Colombia. Through research-based courses, vertically and geographically integrated research projects, and the biannual Encuentro Colombiano de Combinatoria, students participate in a truly international cooperation while making substantial scientific contributions to combinatorics. Since 2007 this initiative has trained more than 150 pre-Ph.D. U.S. students, more than half of whom are members of underrepresented groups in mathematics, and more than 50 of whom have gone onto Ph.D. programs. The initiative also serves mathematicians worldwide through the distribution of course videos, lecture notes, and research projects.This project studies three interdisciplinary and interrelated research directions: 1. By studying the geometric structure of matroids, we obtain purely combinatorial results that seem intractable without the geometric perspective, and we establish foundational results in tropical geometry and combinatorial Hodge theory. 2. We measure polytopes of interest by recognizing that they are part of ?the right? family of polytopes, and finding a formula for the measure of all the polytopes in that family. The results have consequences in toric geometry and representation theory. 3. We explore the Hopf-algebraic structure of various families of polytopes. The resulting objects are useful in numerous combinatorial and algebraic applications, and they raise geometric questions of independent interest. At the heart of each of these three projects lies a configuration of vectors - usually a root system - that plays an essential role. The combinatorial theories of polytopes and (Coxeter) matroids are designed to study such configurations, and the powerful toolkit that they offer is the unifying thread of this project. Solutions to the proposed problems will have a strong impact in combinatorics and discrete geometry, and will further our understanding of central questions in algebra and geometry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几十年中,组合学作为一个领域已经发展和成熟,以满足现代计算的数学需求和所有数学领域的计算需求。特别是,组合学和几何学在最近几年中相互受益匪浅,无论是通过它们直接连接的方式,还是通过相互学习?的哲学和技术。本计画研究代数与几何对象的离散结构,以及拟阵与多面体的代数与几何结构。这种跨学科的视角为解决长期存在的问题提供了意想不到的有效方法。该研究计划构成了美国和哥伦比亚主要本科院校之间充满活力的研究和培训合作的学术骨干。通过基于研究的课程,垂直和地理整合的研究项目,以及一年两次的Encuentro Coconano de Combinatoria,学生参与真正的国际合作,同时为组合学做出重大科学贡献。自2007年以来,该计划已培养了150多名博士生。美国学生,其中一半以上是数学代表性不足的群体的成员,其中50多人获得了博士学位。程序.该计划还通过分发课程视频、课堂讲稿和研究项目为世界各地的数学家提供服务。该项目研究三个跨学科和相互关联的研究方向:1.通过研究拟阵的几何结构,我们得到了纯粹的组合结果,似乎棘手的几何角度,我们建立热带几何和组合霍奇理论的基础结果。2.我们通过认识到感兴趣的多面体是?的一部分来测量它们。右边吗一个多面体的家庭,并找到一个公式的措施,所有的多面体在该家庭。结果对复曲面几何和表示论产生了影响。3.我们探讨了各种家庭的多面体的霍普夫代数结构。由此产生的对象是有用的,在许多组合和代数应用,他们提出了独立的兴趣几何问题。这三个项目的核心都是载体的配置-通常是根系-发挥着至关重要的作用。多面体和(Coxeter)拟阵的组合理论旨在研究这种配置,它们提供的强大工具包是这个项目的统一线索。所提出问题的解决方案将对组合数学和离散几何产生重大影响,并将进一步加深我们对代数和几何中心问题的理解。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hopf Monoids and Generalized Permutahedra
- DOI:10.1090/memo/1437
- 发表时间:2017-09
- 期刊:
- 影响因子:1.9
- 作者:M. Aguiar;Federico Ardila
- 通讯作者:M. Aguiar;Federico Ardila
Lagrangian combinatorics of matroids
拟阵的拉格朗日组合
- DOI:10.5802/alco.263
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ardila, Federico;Denham, Graham;Huh, June
- 通讯作者:Huh, June
Lagrangian geometry of matroids
拟阵的拉格朗日几何
- DOI:10.1090/jams/1009
- 发表时间:2023
- 期刊:
- 影响因子:3.9
- 作者:Ardila, Federico;Denham, Graham;Huh, June
- 通讯作者:Huh, June
The equivariant Ehrhart theory of the permutahedron
置换面体的等变埃尔哈特理论
- DOI:10.1090/proc/15113
- 发表时间:2020
- 期刊:
- 影响因子:1
- 作者:Ardila, Federico;Supina, Mariel;Vindas-Meléndez, Andrés R.
- 通讯作者:Vindas-Meléndez, Andrés R.
The tropical critical points of an affine matroid
仿射拟阵的热带临界点
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ardila-Mantilla, Federico;Eur, Christopher;Penaguiao, Raul
- 通讯作者:Penaguiao, Raul
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federico Ardila其他文献
Tres lecciones en combinatoria algebraica. III. Arreglos de hiperplanos
代数组合的三门学习。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Emerson Le'on;M. Rosas;Mark Skandera - 通讯作者:
Mark Skandera
The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial
Hirzebruch 曲面的双 Gromov-Witten 不变量是分段多项式
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;E. Brugallé - 通讯作者:
E. Brugallé
Geodesics in CAT(0) Cubical Complexes
CAT(0) 立方复形中的测地线
- DOI:
10.1016/j.aam.2011.06.004 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Megan Owen;S. Sullivant - 通讯作者:
S. Sullivant
The Equivariant Volumes of the Permutahedron
置换面体的等变体积
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Federico Ardila;A. Schindler;Andrés R. Vindas - 通讯作者:
Andrés R. Vindas
Subdominant Matroid Ultrametrics
次主拟阵 Ultrametrics
- DOI:
10.1007/s00026-004-0227-1 - 发表时间:
2004 - 期刊:
- 影响因子:0.5
- 作者:
Federico Ardila - 通讯作者:
Federico Ardila
Federico Ardila的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Federico Ardila', 18)}}的其他基金
RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
- 批准号:
2154279 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
RUI: Algebraic and Geometric Aspects of Matroids, Polytopes, and Arrangements
RUI:拟阵、多面体和排列的代数和几何方面
- 批准号:
1600609 - 财政年份:2016
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
CAREER: Matroids, polytopes, and their valuations in algebra and geometry
职业:拟阵、多面体及其在代数和几何中的估值
- 批准号:
0956178 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Formal Power Series and Algebraic Combinatorics: An International Combinatorics Conference
形式幂级数和代数组合学:国际组合学会议
- 批准号:
0963923 - 财政年份:2010
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
相似海外基金
PRIMES: Matroids, Polyhedral Geometry, and Integrable Systems
PRIMES:拟阵、多面体几何和可积系统
- 批准号:
2332342 - 财政年份:2024
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
Forbidden Substructures in Matroids and Graphs
拟阵和图中的禁止子结构
- 批准号:
2884208 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Studentship
Tropical Combinatorics of Graphs and Matroids
图和拟阵的热带组合
- 批准号:
2246967 - 财政年份:2023
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
Optimization, matroids and graphs
优化、拟阵和图表
- 批准号:
RGPIN-2022-03191 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Discovery Grants Program - Individual
The Algebra, Blueprinted Geometry, and Combinatorics of Matroids
拟阵的代数、蓝图几何和组合学
- 批准号:
2154224 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
MPS-Ascend: Triangulations of the Product of Two Simplices and Matroids from Fine Mixed Subdivisions
MPS-Ascend:精细混合细分的两个单纯形和拟阵乘积的三角剖分
- 批准号:
2213323 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Fellowship Award
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2229915 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Standard Grant
RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
- 批准号:
2154279 - 财政年份:2022
- 资助金额:
$ 27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Matroids, Graphs, and Algebraic Geometry
FRG:协作研究:拟阵、图和代数几何
- 批准号:
2053243 - 财政年份:2021
- 资助金额:
$ 27万 - 项目类别:
Standard Grant