RUI: Algebraic and Geometric Aspects of Matroids, Polytopes, and Arrangements
RUI:拟阵、多面体和排列的代数和几何方面
基本信息
- 批准号:1600609
- 负责人:
- 金额:$ 26.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-07-01 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is driven by the philosophy that many objects and relationships in mathematics are best understood by studying the rich discrete structures underlying them. In the last few decades, combinatorics has grown and matured immensely as a field, in response to the mathematical needs of modern computing and the computational needs of all fields of mathematics. This project studies central questions in algebra and geometry where the combinatorial structure of high-dimensional geometric objects plays a crucial role, and offers unexpected, innovative approaches to long-standing problems. This research program constitutes the academic backbone of the San Francisco State University-Colombia Combinatorics Initiative, a vibrant research and training collaboration among primarily undergraduate institutions in the U.S. and Colombia. Through research-based courses, vertically and geographically integrated research projects, and the biannual Encuentro Colombiano de Combinatoria, students participate in a truly international cooperation while making substantial scientific contributions to combinatorics. Since 2007 the initiative has trained more than 200 pre-Ph.D. students, more than half of whom are members of underrepresented groups in mathematics, and more than 50 of whom have gone onto Ph.D. programs. The initiative also helps train mathematicians worldwide through the distribution of course videos, lecture notes, and research projects.This project studies important questions in various fields of mathematics, such as representation theory (Kostant partition functions), enumerative geometry (moduli spaces of curves), polyhedral number theory (Ehrhart polynomials), Brunn-Minkowski theory (valuations of polytopes), Hopf-Lie theory (algebraic structures on polytopes), tropical geometry (tropical linear spaces, moduli spaces, and Hodge theory), total positivity (positroids and their algebraic structure), and combinatorial commutative algebra (Fröberg's conjecture). These subjects are related in surprising ways, and the techniques from one field become powerful tools in the others. At the heart of many of these questions lies a configuration of vectors -- often a root system -- that plays an essential role. The combinatorial theories of polytopes, (Coxeter) matroids, and hyperplane arrangements are designed to study these configurations, and the powerful toolkit that they offer is the unifying thread of this project. Solutions to the problems under study will have a strong impact in combinatorics and discrete geometry, and will further our understanding of central questions in algebra and geometry.
这项研究项目是由这样一种哲学驱动的,即数学中的许多对象和关系都是通过研究它们背后丰富的离散结构来最好地理解的。在过去的几十年里,组合数学作为一个领域得到了极大的发展和成熟,以响应现代计算的数学需求和所有数学领域的计算需求。这个项目研究了代数和几何中的核心问题,其中高维几何对象的组合结构起着关键作用,并为长期存在的问题提供了意想不到的创新方法。这一研究项目构成了旧金山州立大学-哥伦比亚组合学倡议的学术支柱,该倡议是美国和哥伦比亚主要本科生机构之间充满活力的研究和培训合作。通过以研究为基础的课程、垂直和地理上综合的研究项目,以及一年两次的哥伦比亚组合学院,学生们在参与真正的国际合作的同时,为组合数学做出重大的科学贡献。自2007年以来,该计划已经培训了200多名博士前学生,其中一半以上是数学专业代表性不足的群体的成员,其中50多人已经攻读博士学位。该计划还通过分发课程录像、课堂讲稿和研究项目,帮助培训世界各地的数学家。该项目研究不同数学领域的重要问题,如表示论(Kostant配分函数)、计数几何(曲线的模空间)、多面体数论(Ehrhart多项式)、Brunn-Minkowski理论(多面体的赋值)、Hopf-Lie理论(多面体上的代数结构)、热带几何(热带线性空间、模空间和Hodge理论)、全正性(正阵及其代数结构)和组合交换代数(Fröberg猜想)。这些学科以令人惊讶的方式联系在一起,来自一个领域的技术成为了其他领域的强大工具。许多这些问题的核心是一种载体的配置--通常是一个根系--它起着至关重要的作用。多面体、(Coxeter)拟阵和超平面排列的组合理论就是为了研究这些构型而设计的,它们提供的强大工具包是这个项目的统一线索。对正在研究的问题的解决将对组合学和离散几何产生强烈的影响,并将加深我们对代数和几何中的中心问题的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Federico Ardila其他文献
Tres lecciones en combinatoria algebraica. III. Arreglos de hiperplanos
代数组合的三门学习。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Emerson Le'on;M. Rosas;Mark Skandera - 通讯作者:
Mark Skandera
The double Gromov-Witten invariants of Hirzebruch surfaces are piecewise polynomial
Hirzebruch 曲面的双 Gromov-Witten 不变量是分段多项式
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;E. Brugallé - 通讯作者:
E. Brugallé
Geodesics in CAT(0) Cubical Complexes
CAT(0) 立方复形中的测地线
- DOI:
10.1016/j.aam.2011.06.004 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Federico Ardila;Megan Owen;S. Sullivant - 通讯作者:
S. Sullivant
The Equivariant Volumes of the Permutahedron
置换面体的等变体积
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0.8
- 作者:
Federico Ardila;A. Schindler;Andrés R. Vindas - 通讯作者:
Andrés R. Vindas
Subdominant Matroid Ultrametrics
次主拟阵 Ultrametrics
- DOI:
10.1007/s00026-004-0227-1 - 发表时间:
2004 - 期刊:
- 影响因子:0.5
- 作者:
Federico Ardila - 通讯作者:
Federico Ardila
Federico Ardila的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Federico Ardila', 18)}}的其他基金
RUI: Algebra and Geometry of Matroids and Polytopes
RUI:拟阵和多面体的代数和几何
- 批准号:
2154279 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant
Polytopes and Matroids in Algebra and Geometry
代数和几何中的多面体和拟阵
- 批准号:
1855610 - 财政年份:2019
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant
CAREER: Matroids, polytopes, and their valuations in algebra and geometry
职业:拟阵、多面体及其在代数和几何中的估值
- 批准号:
0956178 - 财政年份:2010
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant
Formal Power Series and Algebraic Combinatorics: An International Combinatorics Conference
形式幂级数和代数组合学:国际组合学会议
- 批准号:
0963923 - 财政年份:2010
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Complete reducibility, geometric invariant theory, spherical buildings: a uniform approach to representations of algebraic groups
完全可约性、几何不变量理论、球形建筑:代数群表示的统一方法
- 批准号:
22K13904 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
- 批准号:
2891032 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Studentship
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 26.99万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
LEAPS-MPS: Combinatorics from an Algebraic and Geometric Lens
LEAPS-MPS:代数和几何透镜的组合学
- 批准号:
2211379 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
Investigations in the algebraic and geometric theory of quadratic and hermitian forms
二次和埃尔米特形式的代数和几何理论研究
- 批准号:
RGPIN-2019-05607 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Discovery Grants Program - Individual
Geometric and algebraic methods in Erdos type problems
鄂尔多斯型问题的几何与代数方法
- 批准号:
RGPIN-2018-03880 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric combinatorics of Coxeter groups
Coxeter 群的代数和几何组合
- 批准号:
RGPIN-2018-04615 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and geometric structures related to classical and quantum integrable systems
与经典和量子可积系统相关的代数和几何结构
- 批准号:
DDG-2022-00024 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Discovery Development Grant
Questions in Algebraic and Geometric Combinatorics
代数和几何组合问题
- 批准号:
2153897 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Standard Grant
RTG: Algebraic and Geometric Topology at Michigan State
RTG:密歇根州立大学的代数和几何拓扑
- 批准号:
2135960 - 财政年份:2022
- 资助金额:
$ 26.99万 - 项目类别:
Continuing Grant