Enabling Large-Scale Multi-User Immersive Virtual Reality Simulations
实现大规模多用户沉浸式虚拟现实模拟
基本信息
- 批准号:0958303
- 负责人:
- 金额:$ 31.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-03-01 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last two decades there has been a great deal of interest among scholars, business leaders, and the general public in real-time interactive 3D computer graphics for inmersive virtual environments, in which the user wears a head-mounted display and his/her movements are tracked by sensors. This technology offers great promise as a natural means of interacting with computer-generated environments. To date, however, immersive virtual environments have had difficulty accommodating multiple users, due both to a lack of available space and because of the inherent risk of collision when multiple users, each effectively blindfolded by a head mounted display, walk in the same area. The PI and his team have created a unique system called the HIVE (for Huge Immersive Virtual Environment) on the campus of Miami University in Oxford, Ohio. This is the world's largest indoor immersive virtual environment by a factor of four, offering precise, wireless, untethered tracking of users in a 1000 m2 gymnasium. Additionally, the team has developed effective software algorithms that imperceptibly steer users towards the HIVE's center and away from its walls, a capability that can be leveraged to steer multiple users around each other to prevent collisions. Despite these advances, there are three ways in which the HIVE's capabilities need to be further enhanced to support multiple users:1. The HIVE currently possesses only two wearable rendering systems; several more are needed to pursue multi-user applications.2. The HIVE's optical position tracking system was designed for much smaller tracking volumes, and needs to be upgraded to support robust multi-user simulations.3. Substantial effort will be required to enhance the HIVE's existing software base to include functionality such as collision prediction algorithms that can support multiple users.This is funding to provide these enhancements to the HIVE's existing hardware and software infrastructure, which will have an immediate effect on its utility for research, education, data visualization, and training.Broader Impacts: The enhanced infrastructure will enable research in computer science that: (a) develops, evaluates, and compares 3D user interfaces; (b) develops algorithms for collision detection and multi-user redirected walking; (c) explores the use of inertial sensors for position tracking in portable virtual environments; and (d) develops tools for collaborative computing environments. Additional behavioral research enabled by this funding will aim to improve our understanding of how humans learn and remember large spaces, and of the social dynamics of users who cohabit a computer simulation. The improved infrastructure will also have a dramatic impact on educators who use the HIVE, by enabling: (a) several students and an instructor to be simultaneously involved in educational simulations; (b) new opportunities for hands-on student projects, particularly those that involve partnerships with industry clients to develop real-world products, services, and interactive media; and (c) the digital preservation and demonstration of culturally important spaces.
在过去的二十年里,学者、商界领袖和公众对用于沉浸式虚拟环境的实时交互式3D计算机图形产生了极大的兴趣,在这种虚拟环境中,用户佩戴头戴式显示器,并且他/她的运动由传感器跟踪。 这项技术作为与计算机生成的环境交互的自然手段提供了很大的希望。 然而,迄今为止,沉浸式虚拟环境难以容纳多个用户,这是由于缺乏可用空间以及由于当多个用户(每个用户被头戴式显示器有效地蒙住眼睛)在同一区域中行走时的固有碰撞风险。 PI和他的团队在俄亥俄州牛津市的迈阿密大学校园里创建了一个名为HIVE(巨大沉浸式虚拟环境)的独特系统。 这是世界上最大的室内沉浸式虚拟环境的四倍,在1000平方米的健身房中提供精确的无线无束缚跟踪用户。 此外,该团队还开发了有效的软件算法,可以不知不觉地将用户引导到HIVE的中心并远离其墙壁,这一功能可以用来引导多个用户相互靠近以防止碰撞。 尽管取得了这些进步,但仍有三种方式需要进一步增强HIVE的功能以支持多个用户:1. HIVE目前只有两个可穿戴渲染系统;需要更多的多用户应用程序。 HIVE的光学位置跟踪系统是为更小的跟踪体积设计的,需要升级以支持强大的多用户模拟。3. 将需要大量的努力来增强HIVE现有的软件基础,包括可以支持多个用户的碰撞预测算法等功能。这笔资金用于为HIVE现有的硬件和软件基础设施提供这些增强功能,这将对HIVE在研究、教育、数据可视化和培训方面的效用产生直接影响。增强的基础设施将使计算机科学研究能够:(a)开发、评估和比较三维用户界面;(B)开发碰撞检测和多用户重定向行走的算法;(c)探索在便携式虚拟环境中使用惯性传感器进行位置跟踪;以及(d)开发用于协作计算环境的工具。 这笔资金支持的其他行为研究将旨在提高我们对人类如何学习和记忆大空间的理解,以及共同生活在计算机模拟中的用户的社会动态。 改进后的基础设施还将对使用HIVE的教育工作者产生巨大影响,因为它使:(a)几名学生和一名教员能够同时参与教育模拟;(B)学生动手项目的新机会,特别是那些涉及与行业客户合作开发真实世界产品、服务和互动媒体的项目;以及(c)对重要文化空间进行数字保存和展示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Waller其他文献
The WALKABOUT: Using virtual environments to assess large-scale spatial abilities
走访:使用虚拟环境评估大规模空间能力
- DOI:
10.1016/j.chb.2004.02.022 - 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
David Waller - 通讯作者:
David Waller
Handbook of spatial cognition
空间认知手册
- DOI:
10.1037/13936-000 - 发表时间:
2013 - 期刊:
- 影响因子:2.8
- 作者:
David Waller;L. Nadel - 通讯作者:
L. Nadel
The Case for Routine Mediastinoscopy Prior To Radical Resection of Malignant Pleural Mesotheliom
- DOI:
10.1378/chest.124.4_meetingabstracts.75s-b - 发表时间:
2003-01-01 - 期刊:
- 影响因子:
- 作者:
John Pilling;Duncan Stewart;Antonio Martin-Ucar;Salli Muller;David Waller - 通讯作者:
David Waller
Bronchoscopic Lung Volume Reduction as the Treatment of Choice versus Robotic-Assisted Lung Volume Reduction Surgery in Similar Patients with Emphysema – An Initial Experience of the Benefits and Complications
在类似的肺气肿患者中,支气管镜肺减容术作为首选治疗方法与机器人辅助肺减容术相比——益处和并发症的初步经验
- DOI:
10.2147/copd.s442380 - 发表时间:
2024 - 期刊:
- 影响因子:2.8
- 作者:
Michelle Lee;Al;P. Perikleous;Ralitsa Baranowski;Kelvin Lau;David Waller - 通讯作者:
David Waller
ORIENTATION AND WAYFINDING: A REVIEW
定向和寻路:回顾
- DOI:
- 发表时间:
1999 - 期刊:
- 影响因子:0
- 作者:
E. Hunt;David Waller - 通讯作者:
David Waller
David Waller的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
水稻穗粒数调控关键因子LARGE6的分子遗传网络解析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
量子自旋液体中拓扑拟粒子的性质:量子蒙特卡罗和新的large-N理论
- 批准号:
- 批准年份:2020
- 资助金额:62 万元
- 项目类别:面上项目
甘蓝型油菜Large Grain基因调控粒重的分子机制研究
- 批准号:31972875
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
Large PB/PB小鼠 视网膜新生血管模型的研究
- 批准号:30971650
- 批准年份:2009
- 资助金额:8.0 万元
- 项目类别:面上项目
基因discs large在果蝇卵母细胞的后端定位及其体轴极性形成中的作用机制
- 批准号:30800648
- 批准年份:2008
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
LARGE基因对口腔癌细胞中α-DG糖基化及表达的分子调控
- 批准号:30772435
- 批准年份:2007
- 资助金额:29.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 31.27万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 31.27万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
$ 31.27万 - 项目类别:
Standard Grant
HNDS-I: Pushkin: Enabling large-scale citizen science data collection for the social, behavioral, and economic sciences
HNDS-I:普希金:为社会、行为和经济科学实现大规模公民科学数据收集
- 批准号:
2318474 - 财政年份:2023
- 资助金额:
$ 31.27万 - 项目类别:
Standard Grant
CDS&E: Enabling Quantum Technology Design Optimization Using Large-Scale Quantum Information Preserving Computational Electromagnetics Methods
CDS
- 批准号:
2202389 - 财政年份:2022
- 资助金额:
$ 31.27万 - 项目类别:
Standard Grant
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2022
- 资助金额:
$ 31.27万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Enabling Large-scale Multidisciplinary Design Optimization with Unsteady Simulations: A Hybrid Pseudo-spectral Approach
协作研究:通过非定常模拟实现大规模多学科设计优化:混合伪谱方法
- 批准号:
2223676 - 财政年份:2022
- 资助金额:
$ 31.27万 - 项目类别:
Standard Grant
Collaborative Research: Enabling Large-scale Multidisciplinary Design Optimization with Unsteady Simulations: A Hybrid Pseudo-spectral Approach
协作研究:通过非定常模拟实现大规模多学科设计优化:混合伪谱方法
- 批准号:
2223670 - 财政年份:2022
- 资助金额:
$ 31.27万 - 项目类别:
Standard Grant
Enabling large-scale silicon spin qubit platform using memristor-based neuromorphic circuits for quantum dots auto-tuning
使用基于忆阻器的神经形态电路实现量子点自动调节的大规模硅自旋量子位平台
- 批准号:
RGPIN-2019-06183 - 财政年份:2021
- 资助金额:
$ 31.27万 - 项目类别:
Discovery Grants Program - Individual
Enabling Next Generation Machine Learning for Large Scale Image Analysis
实现大规模图像分析的下一代机器学习
- 批准号:
10698607 - 财政年份:2021
- 资助金额:
$ 31.27万 - 项目类别:














{{item.name}}会员




