Thin Film Metal Ferrite Spinels for Solar-thermochemical Redox Cycles to Split Water
用于太阳能热化学氧化还原循环分解水的薄膜金属铁氧体尖晶石
基本信息
- 批准号:0966201
- 负责人:
- 金额:$ 30.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2015-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0966201WeimerThere is a need to develop cost-effective, renewable energy processes for the production of clean fuels such as hydrogen gas (H2). If H2 can be obtained cost effectively by the splitting of water using concentrated sunlight, then it is possible to operate a fuel cell using renewable H2 to generate electricity or to synthesize other fuels based on renewable H2. Intellectual Merit The overall objective of the proposed research is to develop a fundamental understanding of the ability of metal ferrite spinels to split water into hydrogen gas via a solar-thermal reduction/oxidation (REDOX) cycle. The focus of the research is nickel ferrite (NixFe3-xO4) produced through atomic layer deposition (ALD) on zirconia and alumina substrates. The ALD process allows for precise control of the atomic ratio of Ni/Fe in this material, and also has the potential to provide tight control over the mass loadings of the active ferrite on high surface area substrates.The performance of various ferrite materials and alternative water splitting cycles will be evaluated for their potential to produce H2. Variables to be investigated include ferrite stoichiometry, substrate composition, substrate surface area, REDOX temperatures, rate of reduction heating, and water concentration for oxidation. Specific measurements include REDOX reaction rates and thermochemical cycling using thermogravimetric analysis (TGA) for both thermal reduction at up to 1500 C and steam oxidation at up to 1200 C; depth profiling via X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) to evaluate chemical and structural changes during REDOX cycling; and finally, atomic force microscopy (AFM) to evaluate the robustness of ferrite materials and to assess the possibility of "islanding" resulting from sintering. Experiments are planned to carry out the REDOX cycles under simulated solar-thermal conditions using a High Flux Solar Furnace equipped with a TGA for real-time measurement of heating and cooling rates. By all of these approaches, the importance of diffusion vs. kinetic rate limitations on the splitting of water to H2 by metal ferrite spinels can be assessed.The proposed research is potentially transformative because metal ferrite materials produced through the ALD process have unique a potential to provide high hydrogen gas production rates at the efficiencies needed to make solar-thermal hydrogen production technology viable. Broader ImpactThe education activities will make use of existing NSF (REU) and Department of Education programs (GAANN) to recruit and train undergraduate and graduate students in the proposed research, including students from under-represented groups. Outreach to K12 will also be organized through these programs using students involved in the proposed research.
0966201Weimerthere需要开发具有成本效益的可再生能源过程,以生产清洁燃料(例如氢气(H2))。 如果可以通过使用浓缩的阳光将水分裂有效地获得成本,那么可以使用可再生的H2操作燃料电池以发电或基于可再生的H2合成其他燃料。知识分子值得拟议的研究的总体目标是对金属铁氧体尖晶石通过太阳能还原/氧化(氧化还原)循环的能力进行基本了解。该研究的重点是通过氧化锆和氧化铝底物上的原子层沉积(ALD)产生的镍铁氧体(Nixfe3-XO4)。 ALD过程允许精确控制该材料中Ni/Fe的原子比,并且还具有对高表面积底物上活性铁氧体的质量负荷的严格控制。各种铁素体材料和替代水分裂解循环的性能将评估以产生H2的潜力。 要研究的变量包括铁氧体化学计量学,底物组成,底物表面积,氧化还原温度,还原速率以及氧化的水浓度。 特定的测量包括使用热重分析(TGA)的氧化还原反应速率和热化学循环,可在1500 C下进行热还原,以及最高1200 C的蒸汽氧化;通过X射线光电子光谱(XP)和X射线衍射(XRD)进行深度分析,以评估氧化还原循环期间的化学和结构变化;最后,原子力显微镜(AFM)评估铁氧体材料的鲁棒性,并评估烧结引起的“岛化”的可能性。 计划使用配备了TGA的高通量太阳能炉在模拟的太阳热条件下进行氧化还原周期,以实时测量加热和冷却速率。 通过所有这些方法,可以评估扩散率限制对通过金属铁氧体尖晶石将水分裂为H2的重要性。拟议的研究具有潜在的转化性,因为通过ALD过程产生的金属铁矿材料具有独特的潜力,可以使高氢气生产速率以使Solar-Thermal-Hyderogal生产效率降低。 更广泛的影响教育活动将利用现有的NSF(REU)和教育计划(GAANN)来招募和培训拟议研究的本科生和研究生,包括来自代表性不足的小组的学生。 还将使用参与拟议研究的学生通过这些计划来组织与K12的宣传。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alan Weimer其他文献
HydroGEN Seedling: Computationally Accelerated Discovery and Experimental Demonstration of High-Performance Materials for Advanced Solar Thermochemical Hydrogen Production
HydroGEN 幼苗:用于先进太阳能热化学制氢的高性能材料的计算加速发现和实验演示
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Charles Musgrave;Alan Weimer;Aaron Holder;Zachary J. L. Bare;Christopher Bartel;Samantha Millican;Ryan J. Morelock;Ryan Trottier;Katie Randolph - 通讯作者:
Katie Randolph
Alan Weimer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alan Weimer', 18)}}的其他基金
GOALI: Continuous Spatial Particle Atomic Layer Deposition Processing
GOALI:连续空间粒子原子层沉积处理
- 批准号:
1852824 - 财政年份:2019
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
GOALI: Core/Shell Sinterable Advanced Ceramic Materials Using Particle Atomic Layer Deposition
GOALI:利用粒子原子层沉积的核/壳可烧结先进陶瓷材料
- 批准号:
1563537 - 财政年份:2016
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
REU Site: Program in Biorefining and Biofuels
REU 网站:生物精炼和生物燃料项目
- 批准号:
1261303 - 财政年份:2013
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
GOALI: Controlled Pore Size/Thickness Ultrathin Microporous/Mesoporous Films on Particles
目标:控制孔径/厚度的颗粒上超薄微孔/介孔薄膜
- 批准号:
1067800 - 财政年份:2012
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
REU Site: Program in Biorefining and Biofuels
REU 网站:生物精炼和生物燃料项目
- 批准号:
1005238 - 财政年份:2010
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
Partial Support for PARTEC2004 International Conference on Particle Technology
部分支持PARTEC2004国际粒子技术会议
- 批准号:
0401541 - 财政年份:2004
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Multi-layered Nanocoating of Nano and Submicron Sized Particles at Large Scale
大规模纳米和亚微米尺寸颗粒的多层纳米涂层
- 批准号:
0400292 - 财政年份:2004
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
NER: Conformal Nanoencapsulation of Ultrafine Particles
NER:超细颗粒的保形纳米封装
- 批准号:
0210670 - 财政年份:2002
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Partial Support for Fourth World Congress on Particle Technology July 21-25, 2002, Sydney, Australia
部分支持第四届世界粒子技术大会 2002 年 7 月 21-25 日,澳大利亚悉尼
- 批准号:
0223135 - 财政年份:2002
- 资助金额:
$ 30.12万 - 项目类别:
Standard Grant
Combustion Nitridation Processing in Aerosol Flow Reactors
气溶胶流反应器中的燃烧氮化处理
- 批准号:
9803539 - 财政年份:1998
- 资助金额:
$ 30.12万 - 项目类别:
Continuing Grant
相似国自然基金
服务贸易数字化的理论与实证研究:基于电影行业的视角
- 批准号:72373049
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
文化产品上市前信息对消费者需求和市场结构的影响:基于中国电影市场的实证研究
- 批准号:72272091
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
基于深度特征融合推荐模型的互联网用户电影文化偏好量化研究方法
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度特征融合推荐模型的互联网用户电影文化偏好量化研究方法
- 批准号:72101029
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
区域垄断对纵向整合效应的影响及其机制研究:来自电影行业的经验证据
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigation on detection of terahertz waves using metallic magnetic/non-magnetic ultra-thin film hetero-structure
金属磁性/非磁性超薄膜异质结构探测太赫兹波的研究
- 批准号:
23K03957 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of stress-induced tunnel magnetic functional material by dielectric-magnetic metal nanocomposite thin film.
介电-磁性金属纳米复合薄膜应力诱导隧道磁性功能材料的开发。
- 批准号:
23H01678 - 财政年份:2023
- 资助金额:
$ 30.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on thin film formation technology of metal oxide semiconductors by ALD method aiming at high-performance three-dimensional devices
针对高性能三维器件的ALD法金属氧化物半导体薄膜形成技术研究
- 批准号:
22H01958 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimization of contact resistance in n-type metal phthalocyanine organic thin-film transistors
n型金属酞菁有机薄膜晶体管接触电阻的优化
- 批准号:
547836-2020 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
3D printing and thin film techniques for realizing next-generation lithium metal batteries
用于实现下一代锂金属电池的3D打印和薄膜技术
- 批准号:
570142-2022 - 财政年份:2022
- 资助金额:
$ 30.12万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral