Great Lakes Geometry Conference 2010
2010 年五大湖几何会议
基本信息
- 批准号:0966902
- 负责人:
- 金额:$ 1.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2011-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Building upon the success of the annual Great Lakes Geometry Conference which is by now a well-established conference held in the Great Lakes region, the PIs propose to bring together experts of toric geometry and of the related areas from the faces of symplectic geometry, algebraic geometry and K\"ahler geometry and to provide a common ground where mathematicians share ideas and visions towards the goal of understanding the mirror symmetry of toric varieties in all faces. This will in turn serve a stepping stone towards deeper understanding of Kontsevich's homological mirror symmetry and of Strominger-Yau-Zaslow proposal of Lagrangian torus fibrations on Calabi-Yau manifolds, which have been one of the most active areas of research in geometry and physics of string theory in recent years.While there have been many conferences dedicated to symplectic geometry and mirror symmetry or toric geometry recent years, the PIs are not aware of a conference that brings all of these aspects together in the context of geometry of toric varieties.The Great Lakes Geometry Conference is by now a well-established conference of geometry and topology held in the Great Lakes region. The conference in the year 2010 is its 11-th anniversary and will be held in the University of Wisconsin at Madison. The main theme of the GLGC 2010 is toric geometry and the related areas which will provide a common ground where mathematicians share ideas and visions towards the goal of understanding the mirror symmetry of toric varieties in all faces. We hope that gathering the experts of different faces in toric geometry and mirror symmetry will encourage collaborations between researchers in the areas. In this conference, the PIs draw the speakers at this conference from a diverse spectrum of active research areas in geometry and mathematical physics. One primary goal of this conference is to expose graduate students and early career mathematicians in the related fields to some recent exciting new developments in this active area of geometry and physics of mirror symmetry and toric geometry. We also hope that the conference will benefit the students and the early career mathematicians at the University of Wisconsin and other Midwestern universities, encourage interaction between the universities in the Midwestern region and beyond, and help graduate students and post-docs to work in these exciting areas.
一年一度的五大湖几何会议已成为五大湖地区举办的一项成熟会议,在此基础上,PI 提议将复曲面几何和辛几何、代数几何和卡勒几何等相关领域的专家聚集在一起,为数学家们分享想法和愿景提供一个共同点,以实现全面理解复曲面簇的镜像对称性的目标。 面孔。这反过来又将为更深入地理解 Kontsevich 的同调镜像对称性和 Calabi-Yau 流形上的拉格朗日环面纤维的 Strominger-Yau-Zaslow 提议奠定基础,这些是近年来弦论几何和物理学最活跃的研究领域之一。 近年来,PI 们还不知道有一个会议能够在复曲面几何的背景下将所有这些方面结合在一起。五大湖几何会议目前是在五大湖地区举办的一个成熟的几何和拓扑会议。 2010年是该会议召开11周年,将在威斯康星大学麦迪逊分校举行。 GLGC 2010 的主题是复曲面几何和 相关领域将为数学家们分享想法和愿景提供一个共同点,以实现理解所有面的复曲面簇的镜像对称性的目标。我们希望聚集复曲面几何和镜面对称领域不同领域的专家将鼓励这些领域的研究人员之间的合作。在本次会议中,PI 吸引了来自几何和数学物理领域各个活跃研究领域的演讲者。本次会议的首要目标之一是 让相关领域的研究生和早期职业数学家了解镜像对称和复曲面几何这一活跃的几何和物理领域最近令人兴奋的新发展。 我们也希望这次会议能让威斯康星大学和其他中西部大学的学生和早期职业数学家受益,鼓励中西部地区及其他地区大学之间的互动,并帮助研究生和博士后在这些令人兴奋的领域工作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong-Geun Oh其他文献
Single-molecule chemistry and optical spectroscopy on insulating films with STM
使用 STM 对绝缘薄膜进行单分子化学和光谱分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;坂倉輝俊,木村宏之,野田幸男,石川喜久,岸本俊二,竹中康之,田中清明,十倉好紀,宮坂茂樹;Shuji Saito;Yousoo Kim - 通讯作者:
Yousoo Kim
Japanese Household Behavior in the Stock Market
日本家庭在股票市场的行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hirohi Ohta;Kaoru Ono;Takashi Komatsubara - 通讯作者:
Takashi Komatsubara
「『大阪府民の政治・市民参加と選挙に関する社会調査』の概要と基礎的分析」
“‘大阪市民政治、公民参与和选举社会调查’的概要和基本分析”
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;伊藤理史・三谷はるよ - 通讯作者:
伊藤理史・三谷はるよ
モチビック・コホモロジー,その応用と重要な予想
动机上同调、其应用和重要预测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;Thomas Geisser - 通讯作者:
Thomas Geisser
Construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic disks: II
在伪全纯圆盘的模空间上的久留岛结构的构造:II
- DOI:
10.1016/j.aim.2024.109561 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:1.500
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono - 通讯作者:
Kaoru Ono
Yong-Geun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong-Geun Oh', 18)}}的其他基金
Mirror Symmetry in the Midwest 2012
2012 年中西部的镜像对称
- 批准号:
1242683 - 财政年份:2012
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
0852446 - 财政年份:2009
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Floer homology in mirror symmetry and in symplectic topology
镜像对称和辛拓扑中的弗洛尔同调
- 批准号:
0904197 - 财政年份:2009
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Symplectic Topology, Mirror Symmetry and Analysis of Pseudoholomorphic Curves
辛拓扑、镜像对称与赝全纯曲线分析
- 批准号:
0503934 - 财政年份:2005
- 资助金额:
$ 1.8万 - 项目类别:
Continuing Grant
Floer Theory, Symplectic Geometry and Mirror Symmetry
弗洛尔理论、辛几何和镜面对称
- 批准号:
0203593 - 财政年份:2002
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Topology and geometry of Lagrangian submanifolds and its applications
拉格朗日子流形的拓扑几何及其应用
- 批准号:
9971446 - 财政年份:1999
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Submanifolds
数学科学:辛拓扑
- 批准号:
9504455 - 财政年份:1995
- 资助金额:
$ 1.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Manifolds
数学科学:辛拓扑
- 批准号:
9215011 - 财政年份:1992
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9296078 - 财政年份:1991
- 资助金额:
$ 1.8万 - 项目类别:
Continuing Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9012367 - 财政年份:1990
- 资助金额:
$ 1.8万 - 项目类别:
Continuing Grant
相似海外基金
Seeing in the dark: evolution of supraglacial lakes on the Greenland and Antarctic ice sheets during polar night
黑暗中的视觉:极夜期间格陵兰岛和南极冰原上冰上湖泊的演化
- 批准号:
2902592 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Studentship
Great Lakes Center for Fresh Waters and Human Health
五大湖淡水和人类健康中心
- 批准号:
2418066 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Advancing understanding of interannual variability and extreme events in the thermal structure of large lakes under historical and future climate scenarios
增进对历史和未来气候情景下大型湖泊热结构的年际变化和极端事件的了解
- 批准号:
2319044 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Conference: CET: Great Lakes Offshore Wind (GLOW)
会议:CET:五大湖海上风电 (GLOW)
- 批准号:
2346411 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Doctoral Dissertation Research: A Paleolimnological Investigation of Climate and Nitrogen Impacts on Primary Producers in Greenland Lakes and Community Water Supplies
博士论文研究:气候和氮对格陵兰湖泊和社区供水初级生产者影响的古湖泊学调查
- 批准号:
2330271 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
Effects of Environmental Change on Microbial Self-organized Patterns in Antarctic Lakes
环境变化对南极湖泊微生物自组织模式的影响
- 批准号:
2333917 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant
NSF Engines: Great Lakes Water Innovation Engine
NSF 引擎:五大湖水资源创新引擎
- 批准号:
2315268 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Cooperative Agreement
NSF Engines Development Award: Advancing a sustainable alternative packaging ecosystem in the Great Lakes region (MI, OH)
NSF 引擎开发奖:推动五大湖地区(密歇根州、俄亥俄州)可持续替代包装生态系统
- 批准号:
2314459 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Cooperative Agreement
Planning: FIRE-PLAN: Merging diverse knowledge systems to advance restoration of fire-dependent forests in the Great Lakes region
规划:FIRE-PLAN:融合不同的知识系统,推进五大湖地区依赖火灾的森林的恢复
- 批准号:
2335838 - 财政年份:2024
- 资助金额:
$ 1.8万 - 项目类别:
Standard Grant














{{item.name}}会员




