Floer Theory, Symplectic Geometry and Mirror Symmetry
弗洛尔理论、辛几何和镜面对称
基本信息
- 批准号:0203593
- 负责人:
- 金额:$ 12.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2002
- 资助国家:美国
- 起止时间:2002-07-15 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-0203593Yong-Geun Oh Floer homology in symplectic geometrywas introduced by Floer in an attemptto prove the Arnold conjecture. Various results by Chekanov, Oh, Polterovichand Seidel have proved that the Floer homology is a general powerful tool to investigate symplectic topology.In this project, Oh proposes to further investigate structure and applications of the Floer theory for deeper understanding of the Hamiltonian diffeomorphism group and Lagrangian submanifolds or more generally symplectic topology.The Floer theory of Lagrangian submanifolds, via Fukaya's A-infinity category, also provides a geometric frameworkfor Kontsevich's homological mirror symmetryproposal on Calabi-Yau manifolds. Oh's recent work with Fukaya, Ohta and Ono provides several key steps towards a rigorous construction of Fukaya's category by developing an obstruction theory for defining the Lagrangian intersection Floer homology.Complete construction will involve study of singular Lagrangian submanifolds, Lagrangian surgery and their relations to the Floer homology.Oh proposes to investigate these new aspects of the Floer theoryin relation the mirror symmetry on the Calabi-Yau manifolds.The Hamiltonian formalism playsimportant roles not only for solving problems in classical mechanicsbut also for quantizing the classical mechanics intoquantum mechanics. The Poissonbracket is the crucial geometric structure that plays a key role inthe classical mechanics and the quantum mechanics through thequantization process. When one considers mechanics in a constrained system, i.e., mechanics on a curved space, description of the corresponding phase spaceand the geometric structure corresponding to the Poisson bracketrequires the notion of the symplectic structureand symplectic manifolds. Symplectic geometry and topology is the study of symplectic manifolds. In symplectic geometry, there are two most important objects ofstudy. One is the study of Hamiltonian systems, a special typeof differential equation, and their periodic orbits.This is dynamical in nature. The other is the study of geometryand topology of Lagrangian submanifolds. This is geometric in nature.Understanding the intersection theory of Lagrangian submanifoldsis the core of symplectic topology. Floer homology introduced by Floer in the end of 80's is a general machinery to studythis intersection theory. The Floer theory also provides a geometric framework for the mirror symmetry phenomenon that was discovered by physicists in string theory.Oh's proposed research aims at, on the one hand, deeper understanding ofsymplectic topology, and also aims at understanding inter-relations between the symplectic and the complex geometry via the study of mirror symmetry.
DMS-0203593 Yong-Geun Oh Floer在辛几何中引入了Floer同调,以证明Arnold猜想。Chekanov,Oh,Polterovichand Seidel的许多结果证明了Floer同调是研究辛拓扑的一个有力工具。在本项目中,Oh提出进一步研究Floer理论的结构和应用,以便更深入地理解Hamilton同形群和Lagrange子流形或更一般的辛拓扑。Lagrange子流形的Floer理论,通过福谷的A-无穷范畴,也为Kontsevich关于Calabi-Yau流形的同调镜像定理提供了一个几何框架。Oh最近与福谷、Ohta和Ono一起工作,通过发展一个定义拉格朗日交Floer同调的障碍理论,为严格构造福谷范畴提供了几个关键步骤。完整的构造将涉及奇异拉格朗日子流形的研究,拉格朗日手术和他们的关系到弗洛尔同调。哦建议调查这些新的方面的弗洛尔理论在关系的镜像对称的卡拉比-Hamilton形式不仅对经典力学问题的求解起着重要的作用,而且对经典力学量子化为量子力学也起着重要的作用。 泊松括号是一种重要的几何结构,它通过量子化过程在经典力学和量子力学中起着关键作用。当人们考虑约束系统中的力学时,即,曲空间上的力学,描述相应的相空间和对应于Poisson括号的几何结构需要辛结构和辛流形的概念。辛几何和拓扑学是研究辛流形的学科。在辛几何中,有两个最重要的研究对象。一类是研究Hamilton系统,一种特殊类型的微分方程,以及它们的周期轨道。二是拉格朗日子流形的几何和拓扑研究。理解拉格朗日子流形的交理论是辛拓扑学的核心。Floer同调是Floer在80年代末提出的一种研究交叉理论的通用工具。Floer理论也为物理学家在弦理论中发现的镜像对称现象提供了一个几何框架。Oh提出的研究一方面旨在更深入地理解辛拓扑,另一方面也旨在通过镜像对称的研究来理解辛几何与复几何之间的相互关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong-Geun Oh其他文献
Single-molecule chemistry and optical spectroscopy on insulating films with STM
使用 STM 对绝缘薄膜进行单分子化学和光谱分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;坂倉輝俊,木村宏之,野田幸男,石川喜久,岸本俊二,竹中康之,田中清明,十倉好紀,宮坂茂樹;Shuji Saito;Yousoo Kim - 通讯作者:
Yousoo Kim
モチビック・コホモロジー,その応用と重要な予想
动机上同调、其应用和重要预测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;Thomas Geisser - 通讯作者:
Thomas Geisser
Japanese Household Behavior in the Stock Market
日本家庭在股票市场的行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hirohi Ohta;Kaoru Ono;Takashi Komatsubara - 通讯作者:
Takashi Komatsubara
「『大阪府民の政治・市民参加と選挙に関する社会調査』の概要と基礎的分析」
“‘大阪市民政治、公民参与和选举社会调查’的概要和基本分析”
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;伊藤理史・三谷はるよ - 通讯作者:
伊藤理史・三谷はるよ
A symplectic fixed point theorem onT 2n ×ℂP k
- DOI:
10.1007/bf02570755 - 发表时间:
1990-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Yong-Geun Oh - 通讯作者:
Yong-Geun Oh
Yong-Geun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong-Geun Oh', 18)}}的其他基金
Mirror Symmetry in the Midwest 2012
2012 年中西部的镜像对称
- 批准号:
1242683 - 财政年份:2012
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Great Lakes Geometry Conference 2010
2010 年五大湖几何会议
- 批准号:
0966902 - 财政年份:2010
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
0852446 - 财政年份:2009
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Floer homology in mirror symmetry and in symplectic topology
镜像对称和辛拓扑中的弗洛尔同调
- 批准号:
0904197 - 财政年份:2009
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Symplectic Topology, Mirror Symmetry and Analysis of Pseudoholomorphic Curves
辛拓扑、镜像对称与赝全纯曲线分析
- 批准号:
0503934 - 财政年份:2005
- 资助金额:
$ 12.98万 - 项目类别:
Continuing Grant
Topology and geometry of Lagrangian submanifolds and its applications
拉格朗日子流形的拓扑几何及其应用
- 批准号:
9971446 - 财政年份:1999
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Submanifolds
数学科学:辛拓扑
- 批准号:
9504455 - 财政年份:1995
- 资助金额:
$ 12.98万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Manifolds
数学科学:辛拓扑
- 批准号:
9215011 - 财政年份:1992
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9296078 - 财政年份:1991
- 资助金额:
$ 12.98万 - 项目类别:
Continuing Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9012367 - 财政年份:1990
- 资助金额:
$ 12.98万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Lagrangian Floer Theory and Quantum Invariants of Symplectic Manifolds
拉格朗日弗洛尔理论和辛流形的量子不变量
- 批准号:
1711070 - 财政年份:2017
- 资助金额:
$ 12.98万 - 项目类别:
Continuing Grant
Symplectic Floer Theory and Persistent Homology
辛弗洛尔理论和持久同调
- 批准号:
1509213 - 财政年份:2015
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Development of Floer theory and study on symplectic structures
Florer理论的发展和辛结构的研究
- 批准号:
26247006 - 财政年份:2014
- 资助金额:
$ 12.98万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Symplectic Floer cohomology, mirror symmetry and gauge theory
辛弗洛尔上同调、镜像对称和规范理论
- 批准号:
1406418 - 财政年份:2014
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Floer theory, mirror symmetry conjecture and applications to symplectic geometry
弗洛尔理论、镜面对称猜想及其在辛几何中的应用
- 批准号:
23340015 - 财政年份:2011
- 资助金额:
$ 12.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Floer theory in gauge theory and symplectic geometry
规范论和辛几何中的弗洛尔理论
- 批准号:
1007846 - 财政年份:2010
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Studies on Floer thoery, theory of holomorphic curves and symplectic structures, contact structures
弗洛尔理论、全纯曲线理论和辛结构、接触结构研究
- 批准号:
21244002 - 财政年份:2009
- 资助金额:
$ 12.98万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAREER: The symplectic category, Floer field theory, and relations to gauge theory and topology
职业:辛范畴、弗洛尔场论以及与规范理论和拓扑的关系
- 批准号:
0844188 - 财政年份:2009
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant
Study on Floer theory and symplectic geometry
Florer理论与辛几何研究
- 批准号:
18340014 - 财政年份:2006
- 资助金额:
$ 12.98万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Floer theory in gauge theory and symplectic geometry
规范论和辛几何中的弗洛尔理论
- 批准号:
0604890 - 财政年份:2006
- 资助金额:
$ 12.98万 - 项目类别:
Standard Grant














{{item.name}}会员




