Topology and geometry of Lagrangian submanifolds and its applications
拉格朗日子流形的拓扑几何及其应用
基本信息
- 批准号:9971446
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-07-15 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-9971446Principal Investigator: Yong-Geun OhLagrangian submanifolds are the most important geometric objectsin symplectic geometry. Lagrangian intersection theory is thecore of symplectic geometry, and on the cotangent bundle it isthe symplectification of Morse theory of the base. Recentresults by Oh, Chekanov, Seidel and Polterovich demonstrate thatFloer homology, when defined, is a powerful tool to investigatetopology and geometry of Lagrangian submanifolds. On cotangentbundles, Lagrangian intersection theory also provides aninterpretation of Morse theory, and when combined with the Floerhomology theory, it encodes symplectic rigidity in a canonicalway. Outside cotangent bundles there are obstructions todefining a Floer theory that come from the quantum geometry ofLagrangian submanifolds. Oh proposes to further developfunctorial constructions in the Floer theory and to apply them toproblems related to symplectic topology and mirror symmetry.Other research concerns the variational problem of minimizingvolume of Lagrangian submanifolds on Kaehler manifolds, which isclosely related to Harvey and Lawson's theory of specialLagrangian submanifolds. Special Lagrangian submanifolds are akey to the geometry of holomorphic volume preserving maps, in theway that Gromov's theory of pseudo-holomorphic curves played sucha role in the study of geometry of symplectic maps. Oh proposesto study various analogies between the geometry of holomorphicvolume preserving maps to that of symplectic maps in complexEuclidean spaces (e.g. a version of non-squeezing theorem).The process of constructing a quantum formulation of a systemfrom a knowledge of a classical approximation is called``quantization'' in physics. The lesson learned from history isthat it is hard to quantize mechanics or geometry, and when amechnical system is quantizable, it reveals a very particularphysical and geometrical nature. However, quantum formulationsof 3 and 4 dimensional topology have been essential ingredientsin recent breakthroughs in low dimensional topology and it wasessential to quantize classical (differential) topology to derivethe most delicate non-trivial differential invariants.Lagrangian submanifolds are the most important geometric objectsin symplectic geometry and play a key role in the geometricquantization and in the recent development of mirror symmetry andstring theory in physics. This research will aim at, on the onehand, carrying out this quantization program of differentialtopology and, on the other hand, understanding the inter-relationbetween symplectic, Riemannian and complex geometries.
摘要奖:DMS-9971446主要研究人员:Yong-Geun OhLagrangian子流形是辛几何中最重要的几何对象。拉格朗日交理论是辛几何的核心,余切丛上的拉格朗日交理论是基的Morse理论的辛化。Oh,Chekanov,Seidel和Polterovich的最新结果表明,定义Floer同调是研究Lagrange子流形的拓扑学和几何的有力工具。在余切丛上,拉格朗日交理论也提供了Morse理论的一种解释,当与Floer同调理论结合时,它以规范的方式编码辛刚性。在余切丛之外,定义来自拉格朗日子流形的量子几何的Floer理论存在障碍。Oh建议进一步发展Floer理论中的函数结构,并将其应用于与辛拓扑和镜像对称有关的问题。另一项研究涉及Kaehler流形上的拉格朗日子流形的最小化体积的变分问题,该问题与Harvey和Lawson的特殊拉格朗日子流形理论密切相关。特殊的拉格朗日子流形是全纯保体积映射几何的关键,正如Gromov的伪全纯曲线理论在辛映射几何研究中所起的作用一样。吴建议研究复欧氏空间中全纯保体积映射的几何与辛映射的几何之间的各种类比(例如,非压缩定理的一种形式)。从经典近似的知识构造系统的量子形式的过程在物理学中被称为‘量子化’。从历史中得到的教训是,力学或几何学很难量子化,当一个技术系统可量化时,它揭示了一个非常特殊的物理和几何性质。然而,三维和四维拓扑的量子公式是最近低维拓扑突破的重要组成部分,而量子化经典(微分)拓扑是推导最精细的非平凡微分不变量的关键。拉格朗日子流形是辛几何中最重要的几何对象,在几何量子化以及最近物理中镜像对称和弦理论的发展中发挥着关键作用。本研究的目的一方面是为了实现微分拓扑学的量子化程序,另一方面是为了了解辛几何、黎曼几何和复几何之间的相互关系。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong-Geun Oh其他文献
Single-molecule chemistry and optical spectroscopy on insulating films with STM
使用 STM 对绝缘薄膜进行单分子化学和光谱分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;坂倉輝俊,木村宏之,野田幸男,石川喜久,岸本俊二,竹中康之,田中清明,十倉好紀,宮坂茂樹;Shuji Saito;Yousoo Kim - 通讯作者:
Yousoo Kim
Japanese Household Behavior in the Stock Market
日本家庭在股票市场的行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hirohi Ohta;Kaoru Ono;Takashi Komatsubara - 通讯作者:
Takashi Komatsubara
「『大阪府民の政治・市民参加と選挙に関する社会調査』の概要と基礎的分析」
“‘大阪市民政治、公民参与和选举社会调查’的概要和基本分析”
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;伊藤理史・三谷はるよ - 通讯作者:
伊藤理史・三谷はるよ
モチビック・コホモロジー,その応用と重要な予想
动机上同调、其应用和重要预测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;Thomas Geisser - 通讯作者:
Thomas Geisser
Construction of Kuranishi structures on the moduli spaces of pseudo-holomorphic disks: II
在伪全纯圆盘的模空间上的久留岛结构的构造:II
- DOI:
10.1016/j.aim.2024.109561 - 发表时间:
2024-04-01 - 期刊:
- 影响因子:1.500
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono - 通讯作者:
Kaoru Ono
Yong-Geun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong-Geun Oh', 18)}}的其他基金
Mirror Symmetry in the Midwest 2012
2012 年中西部的镜像对称
- 批准号:
1242683 - 财政年份:2012
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Great Lakes Geometry Conference 2010
2010 年五大湖几何会议
- 批准号:
0966902 - 财政年份:2010
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
0852446 - 财政年份:2009
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Floer homology in mirror symmetry and in symplectic topology
镜像对称和辛拓扑中的弗洛尔同调
- 批准号:
0904197 - 财政年份:2009
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Symplectic Topology, Mirror Symmetry and Analysis of Pseudoholomorphic Curves
辛拓扑、镜像对称与赝全纯曲线分析
- 批准号:
0503934 - 财政年份:2005
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Floer Theory, Symplectic Geometry and Mirror Symmetry
弗洛尔理论、辛几何和镜面对称
- 批准号:
0203593 - 财政年份:2002
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Submanifolds
数学科学:辛拓扑
- 批准号:
9504455 - 财政年份:1995
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Manifolds
数学科学:辛拓扑
- 批准号:
9215011 - 财政年份:1992
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9296078 - 财政年份:1991
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9012367 - 财政年份:1990
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Lagrangian Multiforms for Symmetries and Integrability: Classification, Geometry, and Applications
对称性和可积性的拉格朗日多重形式:分类、几何和应用
- 批准号:
EP/Y006712/1 - 财政年份:2024
- 资助金额:
$ 7.88万 - 项目类别:
Fellowship
Critical symplectic geometry, Lagrangian cobordisms, and stable homotopy theory
临界辛几何、拉格朗日配边和稳定同伦理论
- 批准号:
2305392 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Geometry of Special Lagrangian equation
特殊拉格朗日方程的几何
- 批准号:
22K13909 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Lagrangian Skeleta in Symplectic Geometry and Representation Theory
辛几何与表示论中的拉格朗日骨架
- 批准号:
2101466 - 财政年份:2021
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
- 批准号:
1949812 - 财政年份:2019
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
Hyper-Kahler Geometry via Lagrangian Fibrations and Symplectic Resolutions
通过拉格朗日纤维和辛分辨率的超卡勒几何
- 批准号:
1801818 - 财政年份:2018
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
On the Calabi-Yau manifolds and the special Lagrangian submanifolds from the view point of differential geometry
从微分几何的角度论Calabi-Yau流形和特殊拉格朗日子流形
- 批准号:
16K17598 - 财政年份:2016
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singularities of Special Lagrangian Submanifolds
特殊拉格朗日子流形的奇点
- 批准号:
16K17587 - 财政年份:2016
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Differential geometry and Lagrangian Floer theory for Lagrangian fibrations
拉格朗日纤维的微分几何和拉格朗日弗洛尔理论
- 批准号:
15K04847 - 财政年份:2015
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Lagrangian Floer homology and the geometry of homological mirror symmetry
拉格朗日弗洛尔同调和同调镜像对称的几何
- 批准号:
1406274 - 财政年份:2014
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant














{{item.name}}会员




