Symplectic Topology, Mirror Symmetry and Analysis of Pseudoholomorphic Curves
辛拓扑、镜像对称与赝全纯曲线分析
基本信息
- 批准号:0503934
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-07-01 至 2009-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last two decades of development in symplectic topologysince the advent of Gromov's pseudoholomorphic curves, the methodof pseudoholomorphic curves manifested many genuinely symplecticphenomena combining tools from geometric analysis and Hamiltoniandynamics. Floer theory and its cousin, symplectic field theory,have emerged as a unifying force of analysis, dynamics andgeometry via the language of homological algebra. With Floertheory and the relevant analysis of holomorphic curves as thecommon tools of investigation, this project centers around theinvestigation of deeper aspects of symplectic topology andHamiltonian dynamics up to the level of the topological category.The project also aims at the study of the moduli space ofpseudoholomorphic curves, both open and closed, beyond thewell-known stable map type compactifications and its applicationsto symplectic topology and to mirror symmetry through adiabaticdegeneration and the blow-up analysis. The proposed research willput the method of pseudoholomorphic curves in symplectic topologyin better perspective and further promote the existinginteractions between geometric analysis, symplectic topology anddynamical systems. The Hamiltonian formalism played a fundamentalrole not only for solving problems in classical mechanics but alsofor transforming the classical mechanics into quantum mechanics.When one considers mechanics in a constrained system, i.e.,mechanics on a curved space like `spherical pendulum' or`billiards', description of the corresponding phase space and thedifferential equation requires the Hamiltonian formalism in thecontext of the symplectic structure and symplectic manifolds.In symplectic geometry, there are two aspects of study, one thedynamical aspect and the other the geometric aspect. Understandingthe interplay between the two aspects is the core of symplectictopology. Oh's proposed research aims at deeper understanding ofsymplectic topology, and of its relation to the string theory inphysics. It also aims at easing an access of new coming graduatestudents and mathematicians from related fields to the resultsderived from Oh's research by proposing to write a graduate leveltextbook on Floer theory and its applications.
自Gromov的伪全纯曲线出现以来,在辛拓扑学发展的近二十年中,伪全纯曲线方法结合了几何分析和Hamilton代数的工具,表现了许多真正的辛现象。弗洛尔理论和它的表亲辛场论,通过同调代数的语言,已经成为分析、动力学和几何学的统一力量。本项目以Floer理论和全纯曲线的相关分析为研究工具,深入研究辛拓扑和Hamilton动力学的拓扑范畴,并研究伪全纯曲线的模空间,包括开曲线和闭曲线,除了著名的稳定映射型紧化及其应用辛拓扑和镜像对称通过绝热退化和blow-up分析。本文的研究将使伪全纯曲线方法在辛拓扑中得到更好的应用,并进一步促进几何分析、辛拓扑和动力系统之间的相互作用。哈密顿形式主义不仅对经典力学问题的解决起着基础性的作用,而且对经典力学向量子力学的转化也起着基础性的作用。对于“球摆”或“台球”等弯曲空间上的力学,相应的相空间和微分方程的描述需要辛结构和辛流形背景下的Hamilton形式,辛几何有两个方面的研究,一个是动力学方面,另一个是几何方面。理解这两个方面之间的相互作用是辛拓扑学的核心。Oh提出的研究旨在更深入地理解辛拓扑,以及它与物理学中的弦理论的关系。它还旨在通过建议编写一本关于Floer理论及其应用的研究生水平教科书,方便新来的研究生和相关领域的数学家获得Oh的研究成果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yong-Geun Oh其他文献
Single-molecule chemistry and optical spectroscopy on insulating films with STM
使用 STM 对绝缘薄膜进行单分子化学和光谱分析
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;坂倉輝俊,木村宏之,野田幸男,石川喜久,岸本俊二,竹中康之,田中清明,十倉好紀,宮坂茂樹;Shuji Saito;Yousoo Kim - 通讯作者:
Yousoo Kim
モチビック・コホモロジー,その応用と重要な予想
动机上同调、其应用和重要预测
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;Thomas Geisser - 通讯作者:
Thomas Geisser
Japanese Household Behavior in the Stock Market
日本家庭在股票市场的行为
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hirohi Ohta;Kaoru Ono;Takashi Komatsubara - 通讯作者:
Takashi Komatsubara
「『大阪府民の政治・市民参加と選挙に関する社会調査』の概要と基礎的分析」
“‘大阪市民政治、公民参与和选举社会调查’的概要和基本分析”
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Kenji Fukaya;Yong-Geun Oh;Hiroshi Ohta;Kaoru Ono;伊藤理史・三谷はるよ - 通讯作者:
伊藤理史・三谷はるよ
A symplectic fixed point theorem onT 2n ×ℂP k
- DOI:
10.1007/bf02570755 - 发表时间:
1990-01-01 - 期刊:
- 影响因子:1.000
- 作者:
Yong-Geun Oh - 通讯作者:
Yong-Geun Oh
Yong-Geun Oh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yong-Geun Oh', 18)}}的其他基金
Graduate Student Topology and Geometry Conference
研究生拓扑与几何会议
- 批准号:
0852446 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Floer homology in mirror symmetry and in symplectic topology
镜像对称和辛拓扑中的弗洛尔同调
- 批准号:
0904197 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Standard Grant
Floer Theory, Symplectic Geometry and Mirror Symmetry
弗洛尔理论、辛几何和镜面对称
- 批准号:
0203593 - 财政年份:2002
- 资助金额:
-- - 项目类别:
Standard Grant
Topology and geometry of Lagrangian submanifolds and its applications
拉格朗日子流形的拓扑几何及其应用
- 批准号:
9971446 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Submanifolds
数学科学:辛拓扑
- 批准号:
9504455 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Symplectic Topology & Riemannian Geometry of Lagrangian Manifolds
数学科学:辛拓扑
- 批准号:
9215011 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9296078 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Riemannian Geometry of Lagrangian Submanifolds
数学科学:拉格朗日子流形的黎曼几何
- 批准号:
9012367 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CAREER: Elucidating the Impact of Side-Chain Topology on the Structure-Property Relationship in Bottlebrush Polymers
职业:阐明侧链拓扑对洗瓶刷聚合物结构-性能关系的影响
- 批准号:
2340664 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




