FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces

FRG:协作研究:K3 曲面上有理曲线的算术和几何

基本信息

  • 批准号:
    0968349
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2014-06-30
  • 项目状态:
    已结题

项目摘要

This project addresses the theory of rational curves on K3 surfaces, as a prototype and model for investigations of rational curves on higher-dimensional varieties of Fano and intermediate type. The key problems concern the existence of infinitely many rational curves on K3 surfaces over countable fields, techniques for the generation of such curves and computation of their numerical invariants, Brill-Noether loci and enumerative geometry of rational curves, aspects of mixed-characteristic deformation theory, Galois representations, and Brauer groups.The term `K3 surface' was coined by A. Weil in the 1950's, and honors the seminal contributions of Kummer, Kaehler, and Kodaira to their structure. These surfaces have been central to complex geometry for decades, but recently their arithmetic properties have received increasing attention. This project addresses problems at the interface of complex, algebraic, and arithmetic geometry. In particular, what is the structure of the curves on a K3 surface? Can they be constructed explicitly? And how do they reflect symmetries of the ambient surface?
该项目研究 K3 曲面上的有理曲线理论,作为研究 Fano 和中间类型的高维品种有理曲线的原型和模型。 关键问题涉及可数域上 K3 曲面上无限多有理曲线的存在、生成此类曲线的技术及其数值不变量的计算、有理曲线的 Brill-Noether 轨迹和枚举几何、混合特征变形理论、伽罗瓦表示和布劳尔群的各个方面。术语“K3 曲面”是由 A. Weil 在 1950 年代,并表彰 Kummer、Kaehler 和 Kodaira 对其结构的开创性贡献。 几十年来,这些曲面一直是复杂几何的核心,但最近它们的算术特性受到越来越多的关注。 该项目解决复杂、代数和算术几何接口的问题。 特别是,K3 曲面上的曲线结构是什么? 它们可以显式构造吗? 它们如何反映环境表面的对称性?

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brendan Hassett其他文献

Brendan Hassett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brendan Hassett', 18)}}的其他基金

Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
  • 批准号:
    2309181
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
  • 批准号:
    1929284
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Rationality and Irrationality in Families of Varieties
品种族中的理性与非理性
  • 批准号:
    1701659
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
  • 批准号:
    1551514
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
  • 批准号:
    1439786
  • 财政年份:
    2015
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
  • 批准号:
    1401764
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
  • 批准号:
    0931908
  • 财政年份:
    2010
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Birational geometry, symplectic varieties, and moduli spaces
双有理几何、辛簇和模空间
  • 批准号:
    0901645
  • 财政年份:
    2009
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
  • 批准号:
    0554491
  • 财政年份:
    2006
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Algebraic Geometry of Moduli Spaces
职业:模空间的代数几何
  • 批准号:
    0134259
  • 财政年份:
    2002
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了