Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
基本信息
- 批准号:1929284
- 负责人:
- 金额:$ 2366.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Institute for Computational and Experimental Research in Mathematics (ICERM) is a national institute whose mission is to catalyze fundamental research in the mathematical sciences. Its focus is the fruitful interplay between mathematics and computers, developed through computation and experimentation. ICERM pursues this mission by supporting theoretical advances related to computation and by addressing mathematical problems posed by the use of the computer. Mathematics influences an ever-widening range of scientific and industrial enterprises - including cryptography, data analysis, fluid dynamics, image processing, and industrial design - and computation is at the heart of this interaction. The institute has a special focus on training the next generation in computational skills, preparing them for a variety of scientific careers. ICERM works to increase the participation of members of groups underrepresented in mathematics. To support these goals, it provides a sophisticated research infrastructure including access to high-performance computing and state-of-the-art software resources.ICERM convenes leading scientists from academia and industry, together with students and early-career researchers, in programs that generate new mathematics and that accelerate the development of technology arising from new mathematics. The institute pursues its goals through semester-long programs, with support for postdoctoral fellows and graduate students; week-long workshops disseminating the latest research and catalyzing new collaborations; and team-based research programs exposing graduate and undergraduate students to experimental methodologies and computer-aided tools. Its independent Scientific Advisory Board chooses topics based on proposals from the scientific community; the resulting programs are open to students and researchers from across the country and around the world. ICERM supports data-driven explorations in both pure and applied areas of mathematics through a culture of open exchange of ideas and an environment rich in computational tools. The institute also hosts numerous outreach activities and public events showing the beauty and social impact of mathematical research and computational advances.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数学计算与实验研究所(ICERM)是一个国家研究所,其使命是促进数学科学中的基础研究。它的重点是数学和计算机之间富有成效的相互作用,这是通过计算和实验发展起来的。ICERM通过支持与计算有关的理论进步和解决使用计算机所引起的数学问题来实现这一使命。数学影响着越来越多的科学和工业企业--包括密码学、数据分析、流体力学、图像处理和工业设计--而计算是这种互动的核心。该研究所特别注重培训下一代的计算技能,为他们在各种科学职业中做好准备。ICERM致力于增加在数学方面代表性不足的群体成员的参与。为了支持这些目标,它提供了复杂的研究基础设施,包括访问高性能计算和最先进的软件资源。ICERM召集来自学术界和工业界的顶尖科学家,以及学生和职业生涯早期的研究人员,参与产生新数学并加速由新数学产生的技术发展的计划。该研究所通过为博士后研究员和研究生提供支持的为期一学期的项目来实现其目标;为期一周的研讨会传播最新研究并促进新的合作;以及基于团队的研究项目,让研究生和本科生接触实验方法和计算机辅助工具。其独立的科学顾问委员会根据科学界的建议选择主题;由此产生的项目向来自全国和世界各地的学生和研究人员开放。ICERM通过开放的思想交流文化和丰富的计算工具环境,支持在纯数学和应用数学领域进行数据驱动的探索。该研究所还举办了许多外展活动和公共活动,展示数学研究和计算进步的美丽和社会影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Acousto-electric Inverse Source Problem
- DOI:10.1137/21m1406568
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Wei Li;J. Schotland;Yang Yang-Yang;Yimin Zhong
- 通讯作者:Wei Li;J. Schotland;Yang Yang-Yang;Yimin Zhong
Lazy tournaments and multidegrees of a projective embedding of \(\overline{M}_{0,n}\)
- DOI:10.5070/c63160416
- 发表时间:2021-07
- 期刊:
- 影响因子:0
- 作者:M. Gillespie;Sean T. Griffin;J. Levinson
- 通讯作者:M. Gillespie;Sean T. Griffin;J. Levinson
Permutohedral complexes and rational curves with cyclic action
具有循环作用的全面体复形和有理曲线
- DOI:10.1007/s00229-022-01419-6
- 发表时间:2022
- 期刊:
- 影响因子:0.6
- 作者:Clader, Emily;Damiolini, Chiara;Huang, Daoji;Li, Shiyue;Ramadas, Rohini
- 通讯作者:Ramadas, Rohini
Learning orbital dynamics of binary black hole systems from gravitational wave measurements
- DOI:10.1103/physrevresearch.3.043101
- 发表时间:2021-02
- 期刊:
- 影响因子:4.2
- 作者:B. Keith;Akshay Khadse;Scott E. Field
- 通讯作者:B. Keith;Akshay Khadse;Scott E. Field
Self-similar solutions for the Muskat equation
- DOI:10.1016/j.aim.2022.108294
- 发表时间:2021-09
- 期刊:
- 影响因子:1.7
- 作者:Eduardo Garc'ia-Ju'arez;Javier G'omez-Serrano;H. Nguyen;B. Pausader
- 通讯作者:Eduardo Garc'ia-Ju'arez;Javier G'omez-Serrano;H. Nguyen;B. Pausader
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Hassett其他文献
Brendan Hassett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Hassett', 18)}}的其他基金
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
- 批准号:
2309181 - 财政年份:2023
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
Rationality and Irrationality in Families of Varieties
品种族中的理性与非理性
- 批准号:
1701659 - 财政年份:2017
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
- 批准号:
1551514 - 财政年份:2015
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
- 批准号:
1439786 - 财政年份:2015
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
- 批准号:
1401764 - 财政年份:2014
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
- 批准号:
0968349 - 财政年份:2010
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
- 批准号:
0931908 - 财政年份:2010
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
Birational geometry, symplectic varieties, and moduli spaces
双有理几何、辛簇和模空间
- 批准号:
0901645 - 财政年份:2009
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
- 批准号:
0554491 - 财政年份:2006
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
CAREER: Algebraic Geometry of Moduli Spaces
职业:模空间的代数几何
- 批准号:
0134259 - 财政年份:2002
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
CAREER: Experimental and Computational Studies of Biomolecular Topology
职业:生物分子拓扑的实验和计算研究
- 批准号:
2336744 - 财政年份:2024
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
- 批准号:
2334678 - 财政年份:2024
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
CAREER: Tracking the evolution of human locomotion through field, experimental, and computational analyses of fossil footprints
职业:通过对化石足迹的现场、实验和计算分析来跟踪人类运动的演变
- 批准号:
2335894 - 财政年份:2024
- 资助金额:
$ 2366.06万 - 项目类别:
Continuing Grant
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
$ 2366.06万 - 项目类别:
Studentship
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
Development of Low Power Consumption Multiferroic Memory using Experimental and Computational Approaches
使用实验和计算方法开发低功耗多铁存储器
- 批准号:
23KJ0919 - 财政年份:2023
- 资助金额:
$ 2366.06万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 2366.06万 - 项目类别:
Standard Grant