Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
基本信息
- 批准号:1439786
- 负责人:
- 金额:$ 1550.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Institute for Computational and Experimental Research in Mathematics (ICERM) is a national institute whose mission is to support and catalyze fundamental research in the mathematical sciences with a thematic focus on the fruitful interplay between mathematics and computers, explored and developed through computation and experimentation. ICERM convenes leading scientists from academia and industry, together with students and early-career researchers, in programs that generate new mathematics and that accelerate the development of tools and technology arising from new mathematics. The institute has a special focus on training the next generation of computationally skilled mathematicians and preparing them to enter a variety of scientific careers. ICERM places a priority on increasing the participation of members of groups under-represented in mathematics. To support these goals, ICERM provides a sophisticated research infrastructure as well as access to high performance computing and current software resources. ICERM programs support and broaden the relationship between mathematics and computation by expanding the use of computational and experimental methods in mathematics, by supporting theoretical advances related to computation, and by addressing, through mathematical tools, research, and innovation, problems posed by the use of the computer. Experimentation has historically been a driver of advances in fundamental research in mathematics. New technology opens up new opportunities for research and discovery through experimentation; ICERM programs aim to identify and develop such opportunities. Mathematics interacts with an ever widening range of scientific and industrial enterprises, and computation is at the heart of this interaction. ICERM programs aim to develop resources for data-driven explorations in both pure and applied areas of mathematics. ICERM serves as a national resource for mathematical activities, events, and programs that have strong computational/experimental components and that aim to catalyze development of new mathematics as well as new ways of doing mathematics. The institute runs thematic research programs together with associated international conferences, provides support for postdoctoral fellows and graduate students in residence during semester-long programs, hosts team-based research programs to train graduate and undergraduate students of mathematics in the use of experimental methodologies and computer-aided tools, and conducts a variety of independent workshops, outreach activities, and special events.
数学计算与实验研究所 (ICERM) 是一家国家研究所,其使命是支持和促进数学科学的基础研究,其主题重点是通过计算和实验探索和发展的数学与计算机之间富有成效的相互作用。 ICERM 聚集了来自学术界和工业界的顶尖科学家以及学生和早期职业研究人员,参与产生新数学并加速新数学工具和技术开发的项目。该研究所特别注重培养下一代具有计算技能的数学家,并为他们进入各种科学职业做好准备。 ICERM 优先考虑增加数学领域代表性不足的群体成员的参与。为了支持这些目标,ICERM 提供了先进的研究基础设施以及高性能计算和当前软件资源的访问权限。 ICERM 项目通过扩大数学中计算和实验方法的使用,支持与计算相关的理论进步,并通过数学工具、研究和创新解决计算机使用带来的问题,支持和扩大数学与计算之间的关系。 历史上,实验一直是数学基础研究进步的驱动力。新技术为通过实验进行研究和发现开辟了新的机会; ICERM 计划旨在发现和开发此类机会。 数学与越来越广泛的科学和工业企业相互作用,而计算是这种相互作用的核心。 ICERM 项目旨在为纯数学和应用数学领域的数据驱动探索开发资源。 ICERM 是数学活动、事件和项目的国家资源,具有强大的计算/实验成分,旨在促进新数学以及新的数学方法的发展。 该研究所与相关国际会议一起开展专题研究项目,为博士后研究员和住院研究生提供学期项目支持,举办基于团队的研究项目,培训数学研究生和本科生使用实验方法和计算机辅助工具,并举办各种独立研讨会、外展活动和特别活动。
项目成果
期刊论文数量(24)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Preconditioner for estimation of multipole sources via full waveform inversion
- DOI:10.1016/j.jcp.2020.109667
- 发表时间:2020-06
- 期刊:
- 影响因子:0
- 作者:Mario J. Bencomo;W. Symes
- 通讯作者:Mario J. Bencomo;W. Symes
The distribution of knots in the Petaluma model
Petaluma 模型中结的分布
- DOI:10.2140/agt.2018.18.3647
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Even-Zohar, C;Hass, J;Linial, N;Nowik, T
- 通讯作者:Nowik, T
SCHMIDT'S GAME ON HAUSDORFF METRIC AND FUNCTION SPACES: GENERIC DIMENSION OF SETS AND IMAGES
施密特关于豪斯多夫度量和函数空间的博弈:集合和图像的通用维数
- DOI:10.1112/mtk.12068
- 发表时间:2021
- 期刊:
- 影响因子:0.8
- 作者:Farkas, Ábel;Fraser, Jonathan M.;Nesharim, Erez;Simmons, David
- 通讯作者:Simmons, David
THE CONJECTURE IMPLIES THE RIEMANN HYPOTHESIS
- DOI:10.1112/s0025579316000139
- 发表时间:2016-04
- 期刊:
- 影响因子:0.8
- 作者:S. Bettin;S. Gonek
- 通讯作者:S. Bettin;S. Gonek
A Large-Scale Evaluation Of Shape-Aware Neighborhood Weights And Neighborhood Sizes
形状感知邻域权重和邻域大小的大规模评估
- DOI:10.1016/j.cad.2021.103107
- 发表时间:2021
- 期刊:
- 影响因子:4.3
- 作者:Skrodzki, Martin;Zimmermann, Eric
- 通讯作者:Zimmermann, Eric
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brendan Hassett其他文献
Brendan Hassett的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brendan Hassett', 18)}}的其他基金
Conference: Arithmetic, Birational Geometry, and Moduli
会议:算术、双有理几何和模
- 批准号:
2309181 - 财政年份:2023
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
- 批准号:
1929284 - 财政年份:2020
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
Rationality and Irrationality in Families of Varieties
品种族中的理性与非理性
- 批准号:
1701659 - 财政年份:2017
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
- 批准号:
1551514 - 财政年份:2015
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
Descent, rational points, and the geometry of moduli spaces
下降、有理点和模空间的几何
- 批准号:
1401764 - 财政年份:2014
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Arithmetic and geometry of rational curves on K3 surfaces
FRG:协作研究:K3 曲面上有理曲线的算术和几何
- 批准号:
0968349 - 财政年份:2010
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
Institute for Computational and Experimental Research in Mathematics
数学计算与实验研究所
- 批准号:
0931908 - 财政年份:2010
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
Birational geometry, symplectic varieties, and moduli spaces
双有理几何、辛簇和模空间
- 批准号:
0901645 - 财政年份:2009
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
Collaborative Research: FRG: Geometry of moduli spaces of rational curves with applications to Diophantine problems over function fields
合作研究:FRG:有理曲线模空间的几何及其在函数域上丢番图问题的应用
- 批准号:
0554491 - 财政年份:2006
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
CAREER: Algebraic Geometry of Moduli Spaces
职业:模空间的代数几何
- 批准号:
0134259 - 财政年份:2002
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ERI: Unraveling Multi-Phase Ink Shear-Thinning Flow Mechanism in Direct Ink Writing Process: Computational Fluid Dynamics Simulation and In-Situ Experimental Verification
ERI:揭示直接墨水书写过程中的多相墨水剪切稀化流动机制:计算流体动力学模拟和原位实验验证
- 批准号:
2347497 - 财政年份:2024
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
CAREER: Experimental and Computational Studies of Biomolecular Topology
职业:生物分子拓扑的实验和计算研究
- 批准号:
2336744 - 财政年份:2024
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
- 批准号:
2334678 - 财政年份:2024
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
CAREER: Tracking the evolution of human locomotion through field, experimental, and computational analyses of fossil footprints
职业:通过对化石足迹的现场、实验和计算分析来跟踪人类运动的演变
- 批准号:
2335894 - 财政年份:2024
- 资助金额:
$ 1550.27万 - 项目类别:
Continuing Grant
Data-driven design of Next Generation Cross-Coupling catalysts by Ligand Parameterisation: A Combined Experimental and Computational Approach.
通过配体参数化进行下一代交叉偶联催化剂的数据驱动设计:实验和计算相结合的方法。
- 批准号:
2896325 - 财政年份:2023
- 资助金额:
$ 1550.27万 - 项目类别:
Studentship
Collaborative Research: Understanding Acoustoplasticity through Multiscale Computational and In-Situ, Time-Resolved Experimental Approach
合作研究:通过多尺度计算和原位时间分辨实验方法了解声塑性
- 批准号:
2148678 - 财政年份:2023
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246686 - 财政年份:2023
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
Development of Low Power Consumption Multiferroic Memory using Experimental and Computational Approaches
使用实验和计算方法开发低功耗多铁存储器
- 批准号:
23KJ0919 - 财政年份:2023
- 资助金额:
$ 1550.27万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: Enhancing Chemoselectivity and Efficiency Through Control of Axial Coordination in Rh(II) Complexes: An Experimental and Computational Approach
合作研究:通过控制 Rh(II) 配合物的轴向配位提高化学选择性和效率:实验和计算方法
- 批准号:
2247836 - 财政年份:2023
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant
Collaborative Research: Experimental and computational constraints on the isotope fractionation of Mossbauer-inactive elements in mantle minerals
合作研究:地幔矿物中穆斯堡尔非活性元素同位素分馏的实验和计算约束
- 批准号:
2246687 - 财政年份:2023
- 资助金额:
$ 1550.27万 - 项目类别:
Standard Grant














{{item.name}}会员




