SoCS: Modeling Agency and Intentions in Dynamic Environments as a Precursor to Efficient Human-Computer Interaction

SoCS:动态环境中的代理和意图建模作为高效人机交互的先驱

基本信息

  • 批准号:
    0968538
  • 负责人:
  • 金额:
    $ 25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-09-01 至 2011-08-31
  • 项目状态:
    已结题

项目摘要

People recognize dramatic situations and attribute roles and intentions to perceived characters, even when presented with extremely simple cues. As any cartoon viewer can attest, two animated shapes are sufficient to describe a scene involving tender lovers, brutal bullies, tense confrontations and hair-raising escapes. These basic notions of agency and intentionality are foundational to our social perception of the world. They provide the first discriminations between agents and objects, delineate which elements of the world can move with goal-directed purpose, and provide the primitive structure for describing cause and effect. Extensive laboratory experiments have described many of the basic properties that produce these perceptions on controlled stimuli. However there have been only limited attempts to quantify these processes and no attempts to see if these same properties hold on real-world activity patterns.This project models our human ability to perceive agency, intentionality, and goal-directed behavior in dynamic real-world environments. Using off-the-shelf real-time localization systems, the movements of people and objects are recorded as they engage in unstructured activity and staged group games. Drawing on both this empirical data and theories drawn from the psychophysical data, computational models are constructed that quantify, explain, and predict real-world social and goal-directed behavior. The benefits of this work include: (1) modeling tools for use within behavioral studies, (2) a real-world grounding for psychophysical studies, and (3) a computational model of social and intentional behavior that would enhance human-computer and human-robot interfaces.
人们能够识别戏剧性的情境,并将角色和意图归因于感知到的角色,即使是在非常简单的提示下。任何一个卡通观众都可以证明,两个动画图形足以描述一个场景,包括温柔的恋人、残酷的恶霸、紧张的对抗和令人毛骨悚然的逃跑。代理和意向性的这些基本概念是我们对世界的社会感知的基础。它们提供了主体和对象之间的第一个区别,描绘了世界上哪些元素可以以目标导向的目的移动,并提供了描述因果关系的原始结构。大量的实验室实验已经描述了在受控刺激下产生这些感知的许多基本特性。然而,只有有限的尝试量化这些过程,没有尝试看看这些相同的属性是否适用于现实世界的活动模式。这个项目模拟了人类在动态现实环境中感知代理、意向性和目标导向行为的能力。使用现成的实时定位系统,人和物体的运动被记录下来,因为他们参与了非结构化的活动和阶段性的群体游戏。利用这些经验数据和从心理物理数据中得出的理论,构建计算模型来量化、解释和预测现实世界的社会和目标导向行为。这项工作的好处包括:(1)行为研究中使用的建模工具,(2)心理物理学研究的现实世界基础,以及(3)社会和故意行为的计算模型,将增强人机和人机界面。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Scassellati其他文献

Time-dependant Bayesian knowledge tracing—Robots that model user skills over time
随时间变化的贝叶斯知识追踪——随着时间的推移对用户技能进行建模的机器人
  • DOI:
    10.3389/frobt.2023.1249241
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Nicole Salomons;Brian Scassellati
  • 通讯作者:
    Brian Scassellati
RoSI: A Model for Predicting Robot Social Influence
RoSI:预测机器人社交影响力的模型
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    H. Erel;Marynel Vázquez;S. Sebo;Nicole Salomons;Sarah Gillet;Brian Scassellati
  • 通讯作者:
    Brian Scassellati
Stage # 1 : Mutual Gaze Stage # 2 : Gaze Following Stage # 4 : Declarative Pointing Stage # 3 : Imperative Pointing
阶段
  • DOI:
    10.7551/mitpress/1624.003.0012
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brian Scassellati
  • 通讯作者:
    Brian Scassellati
Toward Measuring the Effect of Robot Competency on Human Kinesthetic Feedback in Long-Term Task Learning
衡量长期任务学习中机器人能力对人类动觉反馈的影响
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shuangge Wang;Brian Scassellati;Tesca Fitzgerald
  • 通讯作者:
    Tesca Fitzgerald
Breathe Easy: Harnessing Robots for Stress Reduction During Pediatric Oral Challenges
轻松呼吸:利用机器人减轻儿童口腔治疗过程中的压力
  • DOI:
    10.1016/j.jaci.2024.12.156
  • 发表时间:
    2025-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Aiden Chun;Ellie Mamantov;Ursula Stahl;Brian Scassellati;Stephanie Leeds
  • 通讯作者:
    Stephanie Leeds

Brian Scassellati的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Scassellati', 18)}}的其他基金

HCC: Medium: Proactive Physical Assistance for Collaborative Human-Robot Teams
HCC:中:人机协作团队的主动物理援助
  • 批准号:
    2106690
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: The role of trust when learning from robots
协作研究:向机器人学习时信任的作用
  • 批准号:
    1955653
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CHS: Small: Watch One, Do One, Teach One: An Integrated Robot Architecture for Skill Transfer
CHS:小型:观看一、做一、教一:用于技能转移的集成机器人架构
  • 批准号:
    1813651
  • 财政年份:
    2018
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
WORKSHOP: The Pioneers Workshop at the 2017 ACM/IEEE International Conference on Human-Robot Interaction
研讨会:2017 年 ACM/IEEE 人机交互国际会议先锋研讨会
  • 批准号:
    1724537
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Socially Assistive Robots
合作研究:社交辅助机器人
  • 批准号:
    1139078
  • 财政年份:
    2012
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
HCC: Small: Manipulating Perceptions of Robot Agency
HCC:小:操纵对机器人机构的看法
  • 批准号:
    1117801
  • 财政年份:
    2011
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CDI-Type I: Understanding Regulation of Visual Attention in Autism through Computational and Robotic Modeling
CDI-I 型:通过计算和机器人建模了解自闭症视觉注意力的调节
  • 批准号:
    0835767
  • 财政年份:
    2008
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Quantative measures of social response for autism diagnosis
自闭症诊断社会反应的定量测量
  • 批准号:
    0534610
  • 财政年份:
    2005
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Social Robots and Human Social Development
职业:社交机器人和人类社会发展
  • 批准号:
    0238334
  • 财政年份:
    2003
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

RII Track-4:NSF: An Integrated Urban Meteorological and Building Stock Modeling Framework to Enhance City-level Building Energy Use Predictions
RII Track-4:NSF:综合城市气象和建筑群建模框架,以增强城市级建筑能源使用预测
  • 批准号:
    2327435
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: Modeling and Decoding Host-Microbiome Interactions in Gingival Tissue
职业:建模和解码牙龈组织中宿主-微生物组的相互作用
  • 批准号:
    2337322
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Cloud-Permitting and Coupled Climate Modeling via Nonhydrostatic Extensions of the CESM Spectral Element Dynamical Core
合作研究:通过 CESM 谱元动力核心的非静水力扩展实现云允许和耦合气候建模
  • 批准号:
    2332469
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
Travel: International Workshop on Numerical Modeling of Earthquake Motions: Waves and Ruptures
旅行:地震运动数值模拟国际研讨会:波浪和破裂
  • 批准号:
    2346964
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
Collaborative Research: Using Polarimetric Radar Observations, Cloud Modeling, and In Situ Aircraft Measurements for Large Hail Detection and Warning of Impending Hail
合作研究:利用偏振雷达观测、云建模和现场飞机测量来检测大冰雹并预警即将发生的冰雹
  • 批准号:
    2344259
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
CAREER: From Underground to Space: An AI Infrastructure for Multiscale 3D Crop Modeling and Assessment
职业:从地下到太空:用于多尺度 3D 作物建模和评估的 AI 基础设施
  • 批准号:
    2340882
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Continuing Grant
NSF-BSF: Collaborative Research: Solids and reactive transport processes in sewer systems of the future: modeling and experimental investigation
NSF-BSF:合作研究:未来下水道系统中的固体和反应性输送过程:建模和实验研究
  • 批准号:
    2134594
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
  • 批准号:
    2243955
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了