CHS: Small: Watch One, Do One, Teach One: An Integrated Robot Architecture for Skill Transfer
CHS:小型:观看一、做一、教一:用于技能转移的集成机器人架构
基本信息
- 批准号:1813651
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the last several years, robotics research has transitioned from being concerned exclusively with building fully autonomous and capable robots to include building partially-capable robots that collaborate with human partners, allowing the robot to do what robots do best and the human to do what humans do best. This transition has been fueled by a renaissance of safe, interactive systems designed to enhance the efforts of small- and medium-scale manufacturing, and has been accompanied by a change in the way we think robots should be trained. Learning mechanisms in which the robot operates in isolation, learning from passive observation of people performing tasks, are being replaced by mechanisms where the robot learns through collaboration with a human partner as they accomplish tasks together. This project will seek to develop a robot architecture that allows for new skills to be taught to a robot by an expert human instructor, for the robot to then become a skilled collaborator that operates side-by-side with a human partner, and finally for the robot to teach that learned skill to a novice human student. To achieve this goal, popular but opaque learning mechanisms will need to be abandoned in favor of novel representations that allow for rapid learning while remaining transparent to explanation during collaboration and teaching, in conjunction with a serious consideration of the mental state (the knowledge, goals, and intentions) of the human partner. A fundamental outcome of this work will be a unified representation linking the existing literature in learning from demonstration to collaborative scenarios and scenarios involving the robot as an instructor. Thus, project outcomes will have broad impact in application domains such as collaborative manufacturing, while also enhancing our substantial investment in education and training (especially research offerings for graduate and undergraduate investigators), and will furthermore enrich the efforts to broaden participation in computing.This effort will build upon research in three subfields and extend the state-of-the-art to address deficiencies in each:1 - Robot as Student. Building on work from Learning from Demonstration, the team will construct robots that learn task models from humans. However, to be useful to the other thrust areas, these models must not be opaque as many current learning techniques are. Instead, a transparent model will allow the robot to provide and ask feedback about its performance, explain what it has learned, and to proactively ask questions that speed up learning.2 - Robot as Collaborator. The relatively new field of Human-Robot Collaboration struggles with synchronizing task execution between human and robot partners. By linking to models of learned task behavior and models of user intention and understanding, the team will construct systems that become proficient in negotiating task allocation, accommodating user preferences, and restoring/updating internal representations in case of errors or change of plans.3 - Robot as Teacher. Fields including Intelligent Tutoring Systems build models of user knowledge, typically modeled using Bayesian knowledge tracing. These models, however, simply show knowledge as known, unknown, or forgotten, and only for factual knowledge. By linking with concrete representations of task and intent, the team will create robots that can detect, extend, or repair the mental model of a student for real-world tasks.A set of milestones across three years will culminate in a demonstration of a robot that can learn a new task, collaborate on that task, and then teach that task to others.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的几年里,机器人技术的研究已经从仅仅关注建造完全自主和有能力的机器人转变为包括建造与人类合作的部分能力的机器人,允许机器人做机器人最擅长的事情,而人类做人类最擅长的事情。 这种转变是由旨在加强中小规模制造业的安全、交互式系统的复兴推动的,同时也伴随着我们对机器人培训方式的改变。 机器人孤立运行的学习机制,从执行任务的人的被动观察中学习,正在被机器人通过与人类合作伙伴一起完成任务来学习的机制所取代。 该项目将寻求开发一种机器人架构,该架构允许由专家人类教练向机器人教授新技能,然后机器人成为与人类合作伙伴并肩作战的熟练合作者,最后机器人将学到的技能传授给新手人类学生。 为了实现这一目标,需要放弃流行但不透明的学习机制,转而采用新的表征,这种表征允许快速学习,同时在协作和教学过程中保持透明,并认真考虑人类合作伙伴的心理状态(知识,目标和意图)。 这项工作的一个基本成果将是一个统一的表示,连接现有的文献在学习从演示到协作的场景和场景涉及的机器人作为一个教练。因此,项目成果将在协同制造等应用领域产生广泛影响,同时也将加强我们在教育和培训方面的大量投资(特别是研究生和本科生研究人员的研究项目),并将进一步丰富扩大参与计算的努力。这一努力将建立在三个子领域的研究基础上,并扩展最先进的技术,以解决每个领域的不足:机器人作为学生 在从演示中学习的工作基础上,该团队将建造从人类学习任务模型的机器人。 然而,为了对其他重点领域有用,这些模型必须不像当前许多学习技术那样不透明。 相反,一个透明的模型将允许机器人提供和询问有关其性能的反馈,解释它学到了什么,并主动提出问题,以加快学习。 相对较新的人机协作领域致力于在人类和机器人伙伴之间同步任务执行。 通过链接到学习的任务行为模型和用户意图和理解模型,团队将构建系统,这些系统将能够熟练地协商任务分配,适应用户偏好,并在出现错误或更改计划时恢复/更新内部表示。 包括智能辅导系统在内的领域构建用户知识模型,通常使用贝叶斯知识跟踪建模。 然而,这些模型只是将知识显示为已知的、未知的或被遗忘的,并且只针对事实知识。 通过与任务和意图的具体表示相联系,该团队将创造出能够检测、扩展或修复学生心理模型的机器人,以完成现实世界的任务。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Impact of an In-Home Co-Located Robotic Coach in Helping People Make Fewer Exercise Mistakes
家庭办公机器人教练在帮助人们减少锻炼错误方面的作用
- DOI:10.1109/ro-man53752.2022.9900722
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Salomons, Nicole;Wallenstein, Tom;Ghose, Debasmita;Scassellati, Brian
- 通讯作者:Scassellati, Brian
Perceived Agency of a Social Norm Violating Robot
违反社会规范的机器人的感知机构
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yasuda, Shannon;Doheny, Devon;Salomons, Nicole;Sebo, Sarah Strohkorb;Scassellati, Brian
- 通讯作者:Scassellati, Brian
Robots in Groups and Teams: A Literature Review
团体和团队中的机器人:文献综述
- DOI:10.1145/3415247
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sebo, Sarah;Stoll, Brett;Scassellati, Brian;Jung, Malte F.
- 通讯作者:Jung, Malte F.
Dog Sit! Domestic Dogs (Canis familiaris) Follow a Robot's Sit Commands
狗坐!
- DOI:10.1145/3371382.3380734
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Qin, Meiying;Huang, Yiyun;Stumph, Ellen;Santos, Laurie;Scassellati, Brian
- 通讯作者:Scassellati, Brian
A Social Robot for Anxiety Reduction via Deep Breathing
通过深呼吸减少焦虑的社交机器人
- DOI:10.1109/ro-man53752.2022.9900638
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Matheus, Kayla;Vazquez, Marynel;Scassellati, Brian
- 通讯作者:Scassellati, Brian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Scassellati其他文献
Time-dependant Bayesian knowledge tracing—Robots that model user skills over time
随时间变化的贝叶斯知识追踪——随着时间的推移对用户技能进行建模的机器人
- DOI:
10.3389/frobt.2023.1249241 - 发表时间:
2024 - 期刊:
- 影响因子:3.4
- 作者:
Nicole Salomons;Brian Scassellati - 通讯作者:
Brian Scassellati
RoSI: A Model for Predicting Robot Social Influence
RoSI:预测机器人社交影响力的模型
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.1
- 作者:
H. Erel;Marynel Vázquez;S. Sebo;Nicole Salomons;Sarah Gillet;Brian Scassellati - 通讯作者:
Brian Scassellati
Stage # 1 : Mutual Gaze Stage # 2 : Gaze Following Stage # 4 : Declarative Pointing Stage # 3 : Imperative Pointing
阶段
- DOI:
10.7551/mitpress/1624.003.0012 - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
Brian Scassellati - 通讯作者:
Brian Scassellati
Toward Measuring the Effect of Robot Competency on Human Kinesthetic Feedback in Long-Term Task Learning
衡量长期任务学习中机器人能力对人类动觉反馈的影响
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Shuangge Wang;Brian Scassellati;Tesca Fitzgerald - 通讯作者:
Tesca Fitzgerald
Breathe Easy: Harnessing Robots for Stress Reduction During Pediatric Oral Challenges
轻松呼吸:利用机器人减轻儿童口腔治疗过程中的压力
- DOI:
10.1016/j.jaci.2024.12.156 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:11.200
- 作者:
Aiden Chun;Ellie Mamantov;Ursula Stahl;Brian Scassellati;Stephanie Leeds - 通讯作者:
Stephanie Leeds
Brian Scassellati的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Scassellati', 18)}}的其他基金
HCC: Medium: Proactive Physical Assistance for Collaborative Human-Robot Teams
HCC:中:人机协作团队的主动物理援助
- 批准号:
2106690 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: The role of trust when learning from robots
协作研究:向机器人学习时信任的作用
- 批准号:
1955653 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
WORKSHOP: The Pioneers Workshop at the 2017 ACM/IEEE International Conference on Human-Robot Interaction
研讨会:2017 年 ACM/IEEE 人机交互国际会议先锋研讨会
- 批准号:
1724537 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Socially Assistive Robots
合作研究:社交辅助机器人
- 批准号:
1139078 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
HCC: Small: Manipulating Perceptions of Robot Agency
HCC:小:操纵对机器人机构的看法
- 批准号:
1117801 - 财政年份:2011
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SoCS: Modeling Agency and Intentions in Dynamic Environments as a Precursor to Efficient Human-Computer Interaction
SoCS:动态环境中的代理和意图建模作为高效人机交互的先驱
- 批准号:
0968538 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CDI-Type I: Understanding Regulation of Visual Attention in Autism through Computational and Robotic Modeling
CDI-I 型:通过计算和机器人建模了解自闭症视觉注意力的调节
- 批准号:
0835767 - 财政年份:2008
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Quantative measures of social response for autism diagnosis
自闭症诊断社会反应的定量测量
- 批准号:
0534610 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Social Robots and Human Social Development
职业:社交机器人和人类社会发展
- 批准号:
0238334 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Powering Small Craft with a Novel Ammonia Engine
用新型氨发动机为小型船只提供动力
- 批准号:
10099896 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Collaborative R&D
"Small performances": investigating the typographic punches of John Baskerville (1707-75) through heritage science and practice-based research
“小型表演”:通过遗产科学和基于实践的研究调查约翰·巴斯克维尔(1707-75)的印刷拳头
- 批准号:
AH/X011747/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Fragment to small molecule hit discovery targeting Mycobacterium tuberculosis FtsZ
针对结核分枝杆菌 FtsZ 的小分子片段发现
- 批准号:
MR/Z503757/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Bacteriophage control of host cell DNA transactions by small ORF proteins
噬菌体通过小 ORF 蛋白控制宿主细胞 DNA 交易
- 批准号:
BB/Y004426/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
Windows for the Small-Sized Telescope (SST) Cameras of the Cherenkov Telescope Array (CTA)
切伦科夫望远镜阵列 (CTA) 小型望远镜 (SST) 相机的窗口
- 批准号:
ST/Z000017/1 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Research Grant
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CSR: Small: Multi-FPGA System for Real-time Fraud Detection with Large-scale Dynamic Graphs
CSR:小型:利用大规模动态图进行实时欺诈检测的多 FPGA 系统
- 批准号:
2317251 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant